Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Superalgebras

Sofiane Bouarroudj, Antonio J. Calderón, Amir Fernández Ouaridi, Rosa María Navarro

Research output: Contribution to journalArticlepeer-review

Abstract

We study the invariants α and β, which correspond to the dimension of an abelian subalgebra (ideal resp.) of maximal dimension, in the context of Leibniz superalgebras. We prove that these invariants coincide if there is an abelian subalgebra of codimension one. We also examine the case in which the abelian subalgebras of maximal dimension are of codimension two. Finally, we study the α and β invariants for some distinguished families of Leibniz superalgebras.

Original languageEnglish (US)
Article number89
JournalMediterranean Journal of Mathematics
Volume21
Issue number3
DOIs
StatePublished - May 2024

Keywords

  • 17A32
  • 17A70
  • 17B30
  • Abelian ideal
  • Abelian subalgebra
  • Leibniz superalgebra
  • nilpotent
  • solvable

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Superalgebras'. Together they form a unique fingerprint.

Cite this