Abstraction of hydrogen by SiH3 from hydrogen-terminated Si(001)-(2 × 1) surfaces

Shyam Ramalingam, Dimitrios Maroudas, Eray S. Aydil, Stephen P. Walch

Research output: Contribution to journalArticle

Abstract

We present the dynamics and energetics of an Eley-Rideal reaction by which SiH3 radicals impinging on a H-terminated Si(001)-(2 × 1) surface during plasma deposition abstract hydrogen atoms from the surface and return to the gas phase as silane molecules. The reactions were observed during classical molecular-dynamics simulations of hydrogenated amorphous silicon deposition from SiH3 radicals impinging on H-terminated Si(001)-(2 × 1) surfaces maintained at temperatures over the range 500 K ≤ T ≤ 773 K. The H-abstraction reaction introduces dangling bonds at the surface that impinging SiHx (0 ≤ × ≤ 3) radicals can attach to; thus, it is a crucial reaction for deposition. The computed activation energy barrier for the reaction and the exothermic reaction energy are 0.09 eV and 0.23 eV, respectively. The energetics of the reaction as computed based on an empirical classical potential are in good agreement with density-functional-theory pseudopotential calculations using a cluster model.

Original languageEnglish (US)
Pages (from-to)L8-L13
JournalSurface Science
Volume418
Issue number1
DOIs
StatePublished - Nov 27 1998

Keywords

  • Density functional calculations
  • Growth
  • Hydrogen
  • Molecular dynamics
  • Plasma deposition
  • Plasma processing
  • Semiconductor-semiconductor thin film structures
  • Silicon
  • Surface chemical reaction

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Abstraction of hydrogen by SiH<sub>3</sub> from hydrogen-terminated Si(001)-(2 × 1) surfaces'. Together they form a unique fingerprint.

  • Cite this