Accelerating online convex optimization via adaptive prediction

Mehryar Mohri, Scott Yang

Research output: Contribution to conferencePaperpeer-review

Abstract

We present a powerful general framework for designing data-dependent online convex optimization algorithms, building upon and unifying recent techniques in adaptive regularization, optimistic gradient predictions, and problem-dependent randomization. We first present a series of new regret guarantees that hold at any time and under very minimal assumptions, and then show how different relaxations recover existing algorithms, both basic as well as more recent sophisticated ones. Finally, we show how combining adaptivity, optimism, and problem-dependent randomization can guide the design of algorithms that benefit from more favorable guarantees than recent state-of-the-art methods.

Original languageEnglish (US)
Pages848-856
Number of pages9
StatePublished - 2016
Event19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016 - Cadiz, Spain
Duration: May 9 2016May 11 2016

Conference

Conference19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016
Country/TerritorySpain
CityCadiz
Period5/9/165/11/16

ASJC Scopus subject areas

  • Artificial Intelligence
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Accelerating online convex optimization via adaptive prediction'. Together they form a unique fingerprint.

Cite this