TY - JOUR
T1 - Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas
T2 - Correlation with EGFR status, tumor grade, and survival
AU - Mizoguchi, Masahiro
AU - Betensky, Rebecca A.
AU - Batchelor, Tracy T.
AU - Bernay, Derek C.
AU - Louis, David N.
AU - Nutt, Catherine L.
PY - 2006/12
Y1 - 2006/12
N2 - Diffuse astrocytic gliomas are the most common human glial tumors with glioblastoma being the most malignant form. Epidermal growth factor receptor (EGFR) gene amplification is one of the most common genetic changes in glioblastoma and can lead to the activation of various downstream signaling molecules, including STAT3, MAPK, and AKT. In this study, we investigated the activation status of these 3 signaling molecules as well as wild-type (EGFRwt) and mutant (EGFRvIII) EGFR in 82 malignant astrocytic gliomas (55 glioblastomas and 27 anaplastic astrocytomas) using immunohistochemistry. The presence of EGFRwt, but not EGFRvIII, immunopositivity correlated significantly with prevalent EGFR gene amplification in glioblastomas. STAT3 and AKT activation correlated significantly with EGFR status, although the correlation for p-STAT3 was attributed exclusively to EGFRvIII. The distribution of these 3 activated molecules varied significantly with tumor grade; although activation of STAT3 was essentially identical between anaplastic astrocytomas and glioblastomas, an increase in the activation of MAPK and AKT appeared to correlate with the progression of anaplastic astrocytoma to glioblastoma. Finally, activated STAT3 and AKT were marginally predictive of improved and worse prognosis, respectively. Taken together, these findings begin to elucidate the interrelationship between these signaling pathways in astrocytic gliomas in vivo.
AB - Diffuse astrocytic gliomas are the most common human glial tumors with glioblastoma being the most malignant form. Epidermal growth factor receptor (EGFR) gene amplification is one of the most common genetic changes in glioblastoma and can lead to the activation of various downstream signaling molecules, including STAT3, MAPK, and AKT. In this study, we investigated the activation status of these 3 signaling molecules as well as wild-type (EGFRwt) and mutant (EGFRvIII) EGFR in 82 malignant astrocytic gliomas (55 glioblastomas and 27 anaplastic astrocytomas) using immunohistochemistry. The presence of EGFRwt, but not EGFRvIII, immunopositivity correlated significantly with prevalent EGFR gene amplification in glioblastomas. STAT3 and AKT activation correlated significantly with EGFR status, although the correlation for p-STAT3 was attributed exclusively to EGFRvIII. The distribution of these 3 activated molecules varied significantly with tumor grade; although activation of STAT3 was essentially identical between anaplastic astrocytomas and glioblastomas, an increase in the activation of MAPK and AKT appeared to correlate with the progression of anaplastic astrocytoma to glioblastoma. Finally, activated STAT3 and AKT were marginally predictive of improved and worse prognosis, respectively. Taken together, these findings begin to elucidate the interrelationship between these signaling pathways in astrocytic gliomas in vivo.
KW - AKT
KW - EGFR
KW - Glioma
KW - MAPK
KW - Phosphorylation
KW - STAT3
UR - http://www.scopus.com/inward/record.url?scp=33845370278&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845370278&partnerID=8YFLogxK
U2 - 10.1097/01.jnen.0000248549.14962.b2
DO - 10.1097/01.jnen.0000248549.14962.b2
M3 - Article
C2 - 17146292
AN - SCOPUS:33845370278
SN - 0022-3069
VL - 65
SP - 1181
EP - 1188
JO - Journal of Neuropathology and Experimental Neurology
JF - Journal of Neuropathology and Experimental Neurology
IS - 12
ER -