@inproceedings{768eb8f6462a4cd7b2eebe33cf900466,
title = "Active Crowd Analysis for Pandemic Risk Mitigation for Blind or Visually Impaired Persons",
abstract = "During pandemics like COVID-19, social distancing is essential to combat the rise of infections. However, it is challenging for the visually impaired to practice social distancing as their low vision hinders them from maintaining a safe physical distance from other humans. In this paper, we propose a smartphone-based computationally-efficient deep neural network to detect crowds and relay the associated risks to the Blind or Visually Impaired (BVI) user through directional audio alerts. The system first detects humans and estimates their distances from the smartphone{\textquoteright}s monocular camera feed. Then, the system clusters humans into crowds to generate density and distance maps from the crowd centers. Finally, the system tracks detections in previous frames creating motion maps predicting the motion of crowds to generate an appropriate audio alert. Active Crowd Analysis is designed for real-time smartphone use, utilizing the phone{\textquoteright}s native hardware to ensure the BVI can safely maintain social distancing.",
keywords = "Active crowd analysis, Crowd density, Crowd distance, Crowd motion, Crowd-Risk Alert, Human detection, Pandemic risk mitigation, Visually impaired",
author = "Samridha Shrestha and Daohan Lu and Hanlin Tian and Qiming Cao and Julie Liu and Rizzo, {John Ross} and Seiple, {William H.} and Maurizio Porfiri and Yi Fang",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Nature Switzerland AG.; Workshops held at the 16th European Conference on Computer Vision, ECCV 2020 ; Conference date: 23-08-2020 Through 28-08-2020",
year = "2020",
doi = "10.1007/978-3-030-66823-5_25",
language = "English (US)",
isbn = "9783030668228",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "422--439",
editor = "Adrien Bartoli and Andrea Fusiello",
booktitle = "Computer Vision – ECCV 2020 Workshops, Proceedings",
address = "Germany",
}