Adaptive Computationally Efficient Network for Monocular 3D Hand Pose Estimation

Zhipeng Fan, Jun Liu, Yao Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

3D hand pose estimation is an important task for a wide range of real-world applications. Existing works in this domain mainly focus on designing advanced algorithms to achieve high pose estimation accuracy. However, besides accuracy, the computation efficiency that affects the computation speed and power consumption is also crucial for real-world applications. In this paper, we investigate the problem of reducing the overall computation cost yet maintaining the high accuracy for 3D hand pose estimation from video sequences. A novel model, called Adaptive Computationally Efficient (ACE) network, is proposed, which takes advantage of a Gaussian kernel based Gate Module to dynamically switch the computation between a light model and a heavy network for feature extraction. Our model employs the light model to compute efficient features for most of the frames and invokes the heavy model only when necessary. Combined with the temporal context, the proposed model accurately estimates the 3D hand pose. We evaluate our model on two publicly available datasets, and achieve state-of-the-art performance at 22% of the computation cost compared to traditional temporal models.

Original languageEnglish (US)
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Pages127-144
Number of pages18
ISBN (Print)9783030585471
DOIs
StatePublished - 2020
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: Aug 23 2020Aug 28 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12349 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period8/23/208/28/20

Keywords

  • 3D hand pose estimation
  • Computation efficiency
  • Dynamic adaption
  • Gaussian gate

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Adaptive Computationally Efficient Network for Monocular 3D Hand Pose Estimation'. Together they form a unique fingerprint.

Cite this