Adaptive damping and mean removal for the generalized approximate message passing algorithm

Jeremy Vila, Philip Schniter, Sundeep Rangan, Florent Krzakala, Lenka Zdeborova

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The generalized approximate message passing (GAMP) algorithm is an efficient method of MAP or approximate-MMSE estimation of x observed from a noisy version of the transform coefficients z = Ax. In fact, for large zero-mean i.i.d sub-Gaussian A, GAMP is characterized by a state evolution whose fixed points, when unique, are optimal. For generic A, however, GAMP may diverge. In this paper, we propose adaptive-damping and mean-removal strategies that aim to prevent divergence. Numerical results demonstrate significantly enhanced robustness to non-zero-mean, rank-deficient, column-correlated, and ill-conditioned A.

Original languageEnglish (US)
Title of host publication2015 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2021-2025
Number of pages5
ISBN (Electronic)9781467369978
DOIs
StatePublished - Aug 4 2015
Event40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 - Brisbane, Australia
Duration: Apr 19 2014Apr 24 2014

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2015-August
ISSN (Print)1520-6149

Other

Other40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
CountryAustralia
CityBrisbane
Period4/19/144/24/14

Keywords

  • Approximate message passing
  • belief propagation
  • compressed sensing

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Adaptive damping and mean removal for the generalized approximate message passing algorithm'. Together they form a unique fingerprint.

Cite this