TY - JOUR
T1 - Adaptive mechanisms of social and asocial learning in immersive collective foraging
AU - Wu, Charley M.
AU - Deffner, Dominik
AU - Kahl, Benjamin
AU - Meder, Björn
AU - Ho, Mark H.
AU - Kurvers, Ralf H.J.M.
N1 - Publisher Copyright:
© The Author(s) 2025.
PY - 2025/12
Y1 - 2025/12
N2 - Human cognition is distinguished by our ability to adapt to different environments and circumstances. Yet the mechanisms driving adaptive behavior have predominantly been studied in separate asocial and social contexts, with an integrated framework remaining elusive. Here, we use a collective foraging task in a virtual Minecraft environment to integrate these two fields, by leveraging automated transcriptions of visual field data combined with high-resolution spatial trajectories. Our behavioral analyses capture both the structure and temporal dynamics of social interactions, which are then directly tested using computational models sequentially predicting each foraging decision. These results reveal that adaptation mechanisms of both asocial foraging and selective social learning are driven by individual foraging success (rather than social factors). Furthermore, it is the degree of adaptivity—of both asocial and social learning—that best predicts individual performance. These findings not only integrate theories across asocial and social domains, but also provide key insights into the adaptability of human decision-making in complex and dynamic social landscapes.
AB - Human cognition is distinguished by our ability to adapt to different environments and circumstances. Yet the mechanisms driving adaptive behavior have predominantly been studied in separate asocial and social contexts, with an integrated framework remaining elusive. Here, we use a collective foraging task in a virtual Minecraft environment to integrate these two fields, by leveraging automated transcriptions of visual field data combined with high-resolution spatial trajectories. Our behavioral analyses capture both the structure and temporal dynamics of social interactions, which are then directly tested using computational models sequentially predicting each foraging decision. These results reveal that adaptation mechanisms of both asocial foraging and selective social learning are driven by individual foraging success (rather than social factors). Furthermore, it is the degree of adaptivity—of both asocial and social learning—that best predicts individual performance. These findings not only integrate theories across asocial and social domains, but also provide key insights into the adaptability of human decision-making in complex and dynamic social landscapes.
UR - http://www.scopus.com/inward/record.url?scp=105003803745&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105003803745&partnerID=8YFLogxK
U2 - 10.1038/s41467-025-58365-6
DO - 10.1038/s41467-025-58365-6
M3 - Article
C2 - 40280950
AN - SCOPUS:105003803745
SN - 2041-1723
VL - 16
JO - Nature communications
JF - Nature communications
IS - 1
M1 - 3539
ER -