Adaptive Online Monitoring of the Ising model

Namjoon Suh, Ruizhi Zhang, Yajun Mei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Ising model is a general framework for capturing the dependency structure among random variables. It has many interesting real-world applications in the fields of medical imaging, genetics, disease surveillance, etc. Nonetheless, literature on the online change-point detection of the interaction parameter in the model is rather limited. This might be attributed to following two challenges: 1) the exact evaluation of the likelihood function with the given data is computationally infeasible due to the presence of partition function and 2) the post-change parameter usually is unknown. In this paper, we overcome these two challenges via our proposed adaptive pseudo-CUSUM procedure, which incorporates the notion of pseudo-likelihood function under the CUSUM framework. Asymptotic analysis, numerical simulation, and case study corroborate the statistical efficiency and the practicality of our proposed scheme.

Original languageEnglish (US)
Title of host publication2019 57th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages426-431
Number of pages6
ISBN (Electronic)9781728131511
DOIs
StatePublished - Sep 2019
Event57th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2019 - Monticello, United States
Duration: Sep 24 2019Sep 27 2019

Publication series

Name2019 57th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2019

Conference

Conference57th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2019
Country/TerritoryUnited States
CityMonticello
Period9/24/199/27/19

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Hardware and Architecture
  • Safety, Risk, Reliability and Quality
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Adaptive Online Monitoring of the Ising model'. Together they form a unique fingerprint.

Cite this