Abstract
In this paper, an adaptive, output feedback control design methodology is presented for a spacecraft formation flying (SFF) system. A Lagrangian derivation of the SFF model is considered to produce position dynamics for follower spacecraft #n relative to follower spacecraft #(n - 1), where n is an arbitrary positive integer, assuming that the leader spacecraft in the formation follows a no-thrust, natural, elliptical orbit. Next, a control law is designed to provide a filtered velocity measurement and a desired adaptive compensation with semi-global, asymptotic, relative position tracking. To show the efficacy of the control algorithm, all desired trajectories are generated online by numerically solving the unperturbed nonlinear SFF dynamics with initial conditions satisfying a no-thrust, natural orbit constraint equation. The proposed control law is simulated for the case of two and three spacecraft and is shown to yield semi-global, asymptotic tracking of the relative position in addition to the convergence of disturbance parameter estimates.
Original language | English (US) |
---|---|
Pages (from-to) | 117-139 |
Number of pages | 23 |
Journal | International Journal of Robust and Nonlinear Control |
Volume | 12 |
Issue number | 2-3 |
DOIs | |
State | Published - Feb 2002 |
Keywords
- Adaptive control
- Output feedback
- Spacecraft formation flying
ASJC Scopus subject areas
- Control and Systems Engineering
- General Chemical Engineering
- Biomedical Engineering
- Aerospace Engineering
- Mechanical Engineering
- Industrial and Manufacturing Engineering
- Electrical and Electronic Engineering