ADP-based adaptive optimal tracking of strict-feedback nonlinear systems

Weinan Gao, Zhong Ping Jiang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are employed to compute an adaptive near-optimal tracker without a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP.

Original languageEnglish (US)
Title of host publication2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-8
Number of pages8
ISBN (Electronic)9781538627259
DOIs
StatePublished - Jul 1 2017
Event2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Honolulu, United States
Duration: Nov 27 2017Dec 1 2017

Publication series

Name2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings
Volume2018-January

Other

Other2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017
Country/TerritoryUnited States
CityHonolulu
Period11/27/1712/1/17

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Control and Optimization

Fingerprint

Dive into the research topics of 'ADP-based adaptive optimal tracking of strict-feedback nonlinear systems'. Together they form a unique fingerprint.

Cite this