TY - JOUR

T1 - Adsorption kinetics of a single polymer on a solid plane

AU - Bhattacharya, S.

AU - Milchev, A.

AU - Rostiashvili, V. G.

AU - Grosberg, A. Y.

AU - Vilgis, T. A.

PY - 2008/6/20

Y1 - 2008/6/20

N2 - We study analytically and by means of an off-lattice bead-spring dynamic Monte Carlo simulation model the adsorption kinetics of a single macromolecule on a structureless flat substrate in the regime of strong physisorption. The underlying notion of a "stem-flower" polymer conformation, and the related mechanism of "zipping" during the adsorption process are shown to lead to a Fokker-Planck equation with reflecting boundary conditions for the time-dependent probability distribution function (PDF) of the number of adsorbed monomers. The theoretical treatment predicts that the mean fraction of adsorbed segments grows with time as a power law with a power of (1+ν) -1, where ν 3/5 is the Flory exponent. The instantaneous distribution of train lengths is predicted to follow an exponential relationship. The corresponding PDFs for loops and tails are also derived. The complete solution for the time-dependent PDF of the number of adsorbed monomers is obtained numerically from the set of discrete coupled differential equations and shown to be in perfect agreement with the Monte Carlo simulation results. In addition to homopolymer adsorption, we also study regular multiblock copolymers and random copolymers, and demonstrate that their adsorption kinetics may be considered within the same theoretical model.

AB - We study analytically and by means of an off-lattice bead-spring dynamic Monte Carlo simulation model the adsorption kinetics of a single macromolecule on a structureless flat substrate in the regime of strong physisorption. The underlying notion of a "stem-flower" polymer conformation, and the related mechanism of "zipping" during the adsorption process are shown to lead to a Fokker-Planck equation with reflecting boundary conditions for the time-dependent probability distribution function (PDF) of the number of adsorbed monomers. The theoretical treatment predicts that the mean fraction of adsorbed segments grows with time as a power law with a power of (1+ν) -1, where ν 3/5 is the Flory exponent. The instantaneous distribution of train lengths is predicted to follow an exponential relationship. The corresponding PDFs for loops and tails are also derived. The complete solution for the time-dependent PDF of the number of adsorbed monomers is obtained numerically from the set of discrete coupled differential equations and shown to be in perfect agreement with the Monte Carlo simulation results. In addition to homopolymer adsorption, we also study regular multiblock copolymers and random copolymers, and demonstrate that their adsorption kinetics may be considered within the same theoretical model.

UR - http://www.scopus.com/inward/record.url?scp=45849120231&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=45849120231&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.77.061603

DO - 10.1103/PhysRevE.77.061603

M3 - Article

AN - SCOPUS:45849120231

SN - 1063-651X

VL - 77

JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics

JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics

IS - 6

M1 - 061603

ER -