Advanced Potential Energy Surfaces for Molecular Simulation

Alex Albaugh, Henry A. Boateng, Richard T. Bradshaw, Omar N. Demerdash, Jacek Dziedzic, Yuezhi Mao, Daniel T. Margul, Jason Swails, Qiao Zeng, David A. Case, Peter Eastman, Lee Ping Wang, Jonathan W. Essex, Martin Head-Gordon, Vijay S. Pande, Jay W. Ponder, Yihan Shao, Chris Kriton Skylaris, Ilian T. Todorov, Mark E. TuckermanTeresa Head-Gordon

Research output: Contribution to journalArticle

Abstract

Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields can be routinely used to obtain computational results comparable to state-of-the-art density functional theory while reaching sampling statistics that are acceptable when compared to that obtained from simpler fixed partial charge force fields.

Original languageEnglish (US)
Pages (from-to)9811-9832
Number of pages22
JournalJournal of Physical Chemistry B
Volume120
Issue number37
DOIs
StatePublished - Sep 22 2016

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Advanced Potential Energy Surfaces for Molecular Simulation'. Together they form a unique fingerprint.

  • Cite this

    Albaugh, A., Boateng, H. A., Bradshaw, R. T., Demerdash, O. N., Dziedzic, J., Mao, Y., Margul, D. T., Swails, J., Zeng, Q., Case, D. A., Eastman, P., Wang, L. P., Essex, J. W., Head-Gordon, M., Pande, V. S., Ponder, J. W., Shao, Y., Skylaris, C. K., Todorov, I. T., ... Head-Gordon, T. (2016). Advanced Potential Energy Surfaces for Molecular Simulation. Journal of Physical Chemistry B, 120(37), 9811-9832. https://doi.org/10.1021/acs.jpcb.6b06414