Adversarial Learning-Based On-Line Anomaly Monitoring for Assured Autonomy

Naman Patel, Apoorva Nandini Saridena, Anna Choromanska, Prashanth Krishnamurthy, Farshad Khorrami

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The paper proposes an on-line monitoring framework for continuous real-time safety/security in learning-based control systems (specifically application to a unmanned ground vehicle). We monitor validity of mappings from sensor inputs to actuator commands, controller-focused anomaly detection (CFAM), and from actuator commands to sensor inputs, system-focused anomaly detection (SFAM). CFAM is an image conditioned energy based generative adversarial network (EBGAN) in which the energy based discriminator distinguishes between proper and anomalous actuator commands. SFAM is based on an action condition video prediction framework to detect anomalies between predicted and observed temporal evolution of sensor data. We demonstrate the effectiveness of the approach on our autonomous ground vehicle for indoor environments and on Udacity dataset for outdoor environments.

Original languageEnglish (US)
Title of host publication2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6149-6154
Number of pages6
ISBN (Electronic)9781538680940
DOIs
StatePublished - Dec 27 2018
Event2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018 - Madrid, Spain
Duration: Oct 1 2018Oct 5 2018

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
Country/TerritorySpain
CityMadrid
Period10/1/1810/5/18

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Adversarial Learning-Based On-Line Anomaly Monitoring for Assured Autonomy'. Together they form a unique fingerprint.

Cite this