TY - JOUR
T1 - Adversarial Reinforcement Learning Framework for Benchmarking Collision Avoidance Mechanisms in Autonomous Vehicles
AU - Behzadan, Vahid
AU - Munir, Arslan
N1 - Publisher Copyright:
© 2009-2012 IEEE.
PY - 2021/6/1
Y1 - 2021/6/1
N2 - With the rapidly growing interest in autonomous navigation, the body of research on motion planning and collision avoidance techniques has enjoyed an accelerating rate of novel proposals and developments. However, the complexity of new techniques and their safety requirements render the bulk of current benchmarking frameworks inadequate, thus leaving the need for efficient comparison techniques unanswered. This work proposes a novel framework based on deep reinforcement learning for benchmarking the behavior of collision avoidance mechanisms under the worst-case scenario of dealing with an optimal adversarial agent, trained to drive the system into unsafe states. We describe the architecture and flow of this framework as a benchmarking solution, and demonstrate its efficacy via a practical case study of comparing the reliability of two collision avoidance mechanisms in response to adversarial attempts to cause collisions.
AB - With the rapidly growing interest in autonomous navigation, the body of research on motion planning and collision avoidance techniques has enjoyed an accelerating rate of novel proposals and developments. However, the complexity of new techniques and their safety requirements render the bulk of current benchmarking frameworks inadequate, thus leaving the need for efficient comparison techniques unanswered. This work proposes a novel framework based on deep reinforcement learning for benchmarking the behavior of collision avoidance mechanisms under the worst-case scenario of dealing with an optimal adversarial agent, trained to drive the system into unsafe states. We describe the architecture and flow of this framework as a benchmarking solution, and demonstrate its efficacy via a practical case study of comparing the reliability of two collision avoidance mechanisms in response to adversarial attempts to cause collisions.
UR - http://www.scopus.com/inward/record.url?scp=85064600274&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064600274&partnerID=8YFLogxK
U2 - 10.1109/MITS.2019.2898964
DO - 10.1109/MITS.2019.2898964
M3 - Article
AN - SCOPUS:85064600274
SN - 1939-1390
VL - 13
SP - 236
EP - 241
JO - IEEE Intelligent Transportation Systems Magazine
JF - IEEE Intelligent Transportation Systems Magazine
IS - 2
M1 - 8686215
ER -