TY - JOUR
T1 - Adversarial stylometry
T2 - Circumventing authorship recognition to preserve privacy and anonymity
AU - Brennan, Michael
AU - Afroz, Sadia
AU - Greenstadt, Rachel
PY - 2012/11
Y1 - 2012/11
N2 - The use of stylometry, authorship recognition through purely linguistic means, has contributed to literary, historical, and criminal investigation breakthroughs. Existing stylometry research assumes that authors have not attempted to disguise their linguistic writing style. We challenge this basic assumption of existing stylometry methodologies and present a new area of research: adversarial stylometry. Adversaries have a devastating effect on the robustness of existing classification methods. Our work presents a framework for creating adversarial passages including obfuscation, where a subject attempts to hide her identity, and imitation, where a subject attempts to frame another subject by imitating his writing style, and translation where original passages are obfuscated with machine translation services. This research demonstrates that manual circumvention methods work very well while automated translation methods are not effective. The obfuscation method reduces the techniques' effectiveness to the level of random guessing and the imitation attempts succeed up to 67% of the time depending on the stylometry technique used. These results are more significant given the fact that experimental subjects were unfamiliar with stylometry, were not professional writers, and spent little time on the attacks. This article also contributes to the field by using human subjects to empirically validate the claim of high accuracy for four current techniques (without adversaries).We have also compiled and released two corpora of adversarial stylometry texts to promote research in this field with a total of 57 unique authors. We argue that this field is important to a multidisciplinary approach to privacy, security, and anonymity.
AB - The use of stylometry, authorship recognition through purely linguistic means, has contributed to literary, historical, and criminal investigation breakthroughs. Existing stylometry research assumes that authors have not attempted to disguise their linguistic writing style. We challenge this basic assumption of existing stylometry methodologies and present a new area of research: adversarial stylometry. Adversaries have a devastating effect on the robustness of existing classification methods. Our work presents a framework for creating adversarial passages including obfuscation, where a subject attempts to hide her identity, and imitation, where a subject attempts to frame another subject by imitating his writing style, and translation where original passages are obfuscated with machine translation services. This research demonstrates that manual circumvention methods work very well while automated translation methods are not effective. The obfuscation method reduces the techniques' effectiveness to the level of random guessing and the imitation attempts succeed up to 67% of the time depending on the stylometry technique used. These results are more significant given the fact that experimental subjects were unfamiliar with stylometry, were not professional writers, and spent little time on the attacks. This article also contributes to the field by using human subjects to empirically validate the claim of high accuracy for four current techniques (without adversaries).We have also compiled and released two corpora of adversarial stylometry texts to promote research in this field with a total of 57 unique authors. We argue that this field is important to a multidisciplinary approach to privacy, security, and anonymity.
KW - Algorithms
KW - Experimentation Additional
UR - http://www.scopus.com/inward/record.url?scp=84872026771&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872026771&partnerID=8YFLogxK
U2 - 10.1145/2382448.2382450
DO - 10.1145/2382448.2382450
M3 - Article
AN - SCOPUS:84872026771
SN - 1094-9224
VL - 15
JO - ACM Transactions on Information and System Security
JF - ACM Transactions on Information and System Security
IS - 3
M1 - 12
ER -