Adversarially regularized autoencoders

Jake Zhao, Yoon Kim, Kelly Zhang, Alexander M. Rush, Yann LeCun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Deep latent variable models, trained using variational autoencoders or generative adversarial networks, are now a key technique for representation learning of continuous structures. However, applying similar methods to discrete structures, such as text sequences or discretized images, has proven to be more challenging. In this work, we propose a flexible method for training deep latent variable models of discrete structures. Our approach is based on the recently-proposed Wasserstein autoencoder (WAE) which formalizes the adversarial autoencoder (AAE) as an optimal transport problem. We first extend this framework to model discrete sequences, and then further explore different learned priors targeting a controllable representation. This adversarially regularized autoencoder (ARAE) allows us to generate natural textual outputs as well as perform manipulations in the latent space to induce change in the output space. Finally we show that the latent representation can be trained to perform unaligned textual style transfer, giving improvements both in automatic/human evaluation compared to existing methods.

Original languageEnglish (US)
Title of host publication35th International Conference on Machine Learning, ICML 2018
EditorsAndreas Krause, Jennifer Dy
PublisherInternational Machine Learning Society (IMLS)
Pages9405-9420
Number of pages16
ISBN (Electronic)9781510867963
StatePublished - 2018
Event35th International Conference on Machine Learning, ICML 2018 - Stockholm, Sweden
Duration: Jul 10 2018Jul 15 2018

Publication series

Name35th International Conference on Machine Learning, ICML 2018
Volume13

Other

Other35th International Conference on Machine Learning, ICML 2018
CountrySweden
CityStockholm
Period7/10/187/15/18

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Cite this

Zhao, J., Kim, Y., Zhang, K., Rush, A. M., & LeCun, Y. (2018). Adversarially regularized autoencoders. In A. Krause, & J. Dy (Eds.), 35th International Conference on Machine Learning, ICML 2018 (pp. 9405-9420). (35th International Conference on Machine Learning, ICML 2018; Vol. 13). International Machine Learning Society (IMLS).