Algorithmic guarantees for inverse imaging with untrained network priors

Gauri Jagatap, Chinmay Hegde

    Research output: Contribution to journalConference articlepeer-review


    Deep neural networks as image priors have been recently introduced for problems such as denoising, super-resolution and inpainting with promising performance gains over hand-crafted image priors such as sparsity. Unlike learned generative priors they do not require any training over large datasets. However, few theoretical guarantees exist in the scope of using untrained network priors for inverse imaging problems. We explore new applications and theory for untrained neural network priors. Specifically, we consider the problem of solving linear inverse problems, such as compressive sensing, as well as non-linear problems, such as compressive phase retrieval. We model images to lie in the range of an untrained deep generative network with a fixed seed. We further present a projected gradient descent scheme that can be used for both compressive sensing and phase retrieval and provide rigorous theoretical guarantees for its convergence. We also show both theoretically as well as empirically that with deep neural network priors, one can achieve better compression rates for the same image quality as compared to when hand crafted priors are used.

    Original languageEnglish (US)
    JournalAdvances in Neural Information Processing Systems
    StatePublished - 2019
    Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
    Duration: Dec 8 2019Dec 14 2019

    ASJC Scopus subject areas

    • Computer Networks and Communications
    • Information Systems
    • Signal Processing


    Dive into the research topics of 'Algorithmic guarantees for inverse imaging with untrained network priors'. Together they form a unique fingerprint.

    Cite this