TY - GEN
T1 - Algorithmically efficient syntactic characterization of possibility domains
AU - Díaz, Josep
AU - Kirousis, Lefteris
AU - Kokonezi, Sofia
AU - Livieratos, John
N1 - Publisher Copyright:
© Graham Cormode, Jacques Dark, and Christian Konrad; licensed under Creative Commons License CC-BY
PY - 2019/7/1
Y1 - 2019/7/1
N2 - We call domain any arbitrary subset of a Cartesian power of the set {0, 1} when we think of it as reflecting abstract rationality restrictions on vectors of two-valued judgments on a number of issues. In Computational Social Choice Theory, and in particular in the theory of judgment aggregation, a domain is called a possibility domain if it admits a non-dictatorial aggregator, i.e. if for some k there exists a unanimous (idempotent) function F : Dk → D which is not a projection function. We prove that a domain is a possibility domain if and only if there is a propositional formula of a certain syntactic form, sometimes called an integrity constraint, whose set of satisfying truth assignments, or models, comprise the domain. We call possibility integrity constraints the formulas of the specific syntactic type we define. Given a possibility domain D, we show how to construct a possibility integrity constraint for D efficiently, i.e, in polynomial time in the size of the domain. We also show how to distinguish formulas that are possibility integrity constraints in linear time in the size of the input formula. Finally, we prove the analogous results for local possibility domains, i.e. domains that admit an aggregator which is not a projection function, even when restricted to any given issue. Our result falls in the realm of classical results that give syntactic characterizations of logical relations that have certain closure properties, like e.g. the result that logical relations component-wise closed under logical AND are precisely the models of Horn formulas. However, our techniques draw from results in judgment aggregation theory as well from results about propositional formulas and logical relations.
AB - We call domain any arbitrary subset of a Cartesian power of the set {0, 1} when we think of it as reflecting abstract rationality restrictions on vectors of two-valued judgments on a number of issues. In Computational Social Choice Theory, and in particular in the theory of judgment aggregation, a domain is called a possibility domain if it admits a non-dictatorial aggregator, i.e. if for some k there exists a unanimous (idempotent) function F : Dk → D which is not a projection function. We prove that a domain is a possibility domain if and only if there is a propositional formula of a certain syntactic form, sometimes called an integrity constraint, whose set of satisfying truth assignments, or models, comprise the domain. We call possibility integrity constraints the formulas of the specific syntactic type we define. Given a possibility domain D, we show how to construct a possibility integrity constraint for D efficiently, i.e, in polynomial time in the size of the domain. We also show how to distinguish formulas that are possibility integrity constraints in linear time in the size of the input formula. Finally, we prove the analogous results for local possibility domains, i.e. domains that admit an aggregator which is not a projection function, even when restricted to any given issue. Our result falls in the realm of classical results that give syntactic characterizations of logical relations that have certain closure properties, like e.g. the result that logical relations component-wise closed under logical AND are precisely the models of Horn formulas. However, our techniques draw from results in judgment aggregation theory as well from results about propositional formulas and logical relations.
KW - Algorithm complexity
KW - And phrases collective decision making
KW - Computational social choice
KW - Judgment aggregation
KW - Logical relations
UR - http://www.scopus.com/inward/record.url?scp=85069191133&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069191133&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ICALP.2019.50
DO - 10.4230/LIPIcs.ICALP.2019.50
M3 - Conference contribution
AN - SCOPUS:85069191133
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019
A2 - Baier, Christel
A2 - Chatzigiannakis, Ioannis
A2 - Flocchini, Paola
A2 - Leonardi, Stefano
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019
Y2 - 9 July 2019 through 12 July 2019
ER -