Altered Ca 2+ signaling in enamelopathies

Miriam Eckstein, Francisco J. Aulestia, Meerim K. Nurbaeva, Rodrigo S. Lacruz

Research output: Contribution to journalReview articlepeer-review

Abstract

Biomineralization requires the controlled movement of ions across cell barriers to reach the sites of crystal growth. Mineral precipitation occurs in aqueous phases as fluids become supersaturated with specific ionic compositions. In the biological world, biomineralization is dominated by the presence of calcium (Ca 2+ ) in crystal lattices. Ca 2+ channels are intrinsic modulators of this process, facilitating the availability of Ca 2+ within cells in a tightly regulated manner in time and space. Unequivocally, the most mineralized tissue produced by vertebrates, past and present, is dental enamel. With some of the longest carbonated hydroxyapatite (Hap) crystals known, dental enamel formation is fully coordinated by specialized epithelial cells of ectodermal origin known as ameloblasts. These cells form enamel in two main developmental stages: a) secretory; and b) maturation. The secretory stage is marked by volumetric growth of the tissue with limited mineralization, and the opposite is found in the maturation stage, as enamel crystals expand in width concomitant with increased ion transport. Disruptions in the formation and/or mineralization stages result, in most cases, in permanent alterations in the crystal assembly. This introduces weaknesses in the material properties affecting enamel's hardness and durability, thus limiting its efficacy as a biting, chewing tool and increasing the possibility of pathology. Here, we briefly review enamel development and discuss key properties of ameloblasts and their Ca 2+ -handling machinery, and how alterations in this toolkit result in enamelopathies.

Original languageEnglish (US)
Pages (from-to)1778-1785
Number of pages8
JournalBiochimica et Biophysica Acta - Molecular Cell Research
Volume1865
Issue number11
DOIs
StatePublished - Nov 2018

Keywords

  • Ameloblasts
  • Ca signaling
  • Channelopathy
  • Enamel

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Altered Ca 2+ signaling in enamelopathies'. Together they form a unique fingerprint.

Cite this