AMBER: Adaptive energy management for on-chip hybrid video memories

Muhammad Usman Karim Khan, Muhammad Shafique, Jorg Henkel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The ever increasing leakage power of memories in a system has motivated researches for exploiting unconventional memory architectures. Non-Volatile Memory (NVM) used in conjunction with the conventional on-chip SRAMs has given birth to the hybrid memory paradigm, which can be intelligently exploited to reduce the energy consumption while tackling the high read and write latencies of NVMs. We present a novel scheme AMBER that aims at minimizing the total memory energy consumption of a video processing system by leveraging the application-specific properties and distinct latency and power properties of different memory types. AMBER also features architectural support for data-fetching from external memory and adaptively filling the different on-chip memories. We employ AMBER in the next-generation High Efficiency Video Coding (HEVC) standard to minimize the energy consumption of the new complex motion prediction process. Experimental results demonstrate that our AMBER scheme achieves significant energy savings (average 43%) for the on-chip memory.

Original languageEnglish (US)
Title of host publication2013 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2013 - Digest of Technical Papers
Pages405-412
Number of pages8
DOIs
StatePublished - 2013
Event2013 32nd IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2013 - San Jose, CA, United States
Duration: Nov 18 2013Nov 21 2013

Publication series

NameIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
ISSN (Print)1092-3152

Other

Other2013 32nd IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2013
CountryUnited States
CitySan Jose, CA
Period11/18/1311/21/13

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'AMBER: Adaptive energy management for on-chip hybrid video memories'. Together they form a unique fingerprint.

Cite this