Among Us: Adversarially Robust Collaborative Perception by Consensus

Yiming Li, Qi Fang, Jiamu Bai, Siheng Chen, Felix Juefei-Xu, Chen Feng

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Multiple robots could perceive a scene (e.g., detect objects) collaboratively better than individuals, although easily suffer from adversarial attacks when using deep learning. This could be addressed by the adversarial defense, but its training requires the often-unknown attacking mechanism. Differently, we propose ROBOSAC, a novel sampling-based defense strategy generalizable to unseen attackers. Our key idea is that collaborative perception should lead to consensus rather than dissensus in results compared to individual perception. This leads to our hypothesize-and-verify framework: perception results with and without collaboration from a random subset of teammates are compared until reaching a consensus. In such a framework, more teammates in the sampled subset often entail better perception performance but require longer sampling time to reject potential attackers. Thus, we derive how many sampling trials are needed to ensure the desired size of an attacker-free subset, or equivalently, the maximum size of such a subset that we can successfully sample within a given number of trials. We validate our method on the task of collaborative 3D object detection in autonomous driving scenarios.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages10
ISBN (Electronic)9798350307184
StatePublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: Oct 2 2023Oct 6 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499


Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition


Dive into the research topics of 'Among Us: Adversarially Robust Collaborative Perception by Consensus'. Together they form a unique fingerprint.

Cite this