TY - JOUR
T1 - Amygdala-hippocampal shape differences in schizophrenia
T2 - The application of 3D shape models to volumetric MR data
AU - Shenton, Martha E.
AU - Gerig, Guido
AU - McCarley, Robert W.
AU - Székely, Gábor
AU - Kikinis, Ron
N1 - Funding Information:
This research was supported in part by funds from the National Institute of Mental Health, including grants NIMH K02 MH-01110 and R01 MH-50747 (Dr Shenton), and NIMH R01-40977 (Dr McCarley); by VA MERIT Awards from the Department of Veterans Affairs (Drs McCarley and Shenton), by the Medical Research Service and Brockton VA Schizophrenia Center of the Department of Veteran Affairs (Dr McCarley); and by P01 CA67165, P01 AG04953, R01 RR11747 and P41 RR13218 (Dr Kikinis). We would also like to thank Peter Ratiu, M.D., an expert in computational neuroanatomy and 3D renderings of anatomy. His assistance was invaluable in describing the neuroanatomical regions of the amygdala–hippocampal complex that showed shape deformations between the left and right amygdala–hippocampal complex in patients with schizophrenia.
PY - 2002/8/20
Y1 - 2002/8/20
N2 - Evidence suggests that some structural brain abnormalities in schizophrenia are neurodevelopmental in origin. There is also growing evidence to suggest that shape deformations in brain structure may reflect abnormalities in neurodevelopment. While many magnetic resonance (MR) imaging studies have investigated brain area and volume measures in schizophrenia, fewer have focused on shape deformations. In this MR study we used a 3D shape representation technique, based on spherical harmonic functions, to analyze left and right amygdala-hippocampus shapes in each of 15 patients with schizophrenia and 15 healthy controls matched for age, gender, handedness and parental socioeconomic status. Left/right asymmetry was also measured for both shape and volume differences. Additionally, shape and volume measurements were combined in a composite analysis. There were no differences between groups in overall volume or shape. Left/right amygdala-hippocampal asymmetry, however, was significantly larger in patients than controls for both relative volume and shape. The local brain regions responsible for the left/right asymmetry differences in patients with schizophrenia were in the tail of the hippocampus (including both the inferior aspect adjacent to parahippocampal gyrus and the superior aspect adjacent to the lateral geniculate nucleus and more anteriorly to the cerebral peduncles) and in portions of the amygdala body (including the anterior-superior aspect adjacent to the basal nucleus). Also, in patients, increased volumetric asymmetry tended to be correlated with increased left/right shape asymmetry. Furthermore, a combined analysis of volume and shape asymmetry resulted in improved differentiation between groups. Classification function analyses correctly classified 70% of cases using volume, 73.3% using shape, and 87% using combined volume and shape measures. These findings suggest that shape provides important new information toward characterizing the pathophysiology of schizophrenia, and that combining volume and shape measures provides improved group discrimination in studies investigating brain abnormalities in schizophrenia. An evaluation of shape deformations also suggests local abnormalities in the amygdala-hippocampal complex in schizophrenia.
AB - Evidence suggests that some structural brain abnormalities in schizophrenia are neurodevelopmental in origin. There is also growing evidence to suggest that shape deformations in brain structure may reflect abnormalities in neurodevelopment. While many magnetic resonance (MR) imaging studies have investigated brain area and volume measures in schizophrenia, fewer have focused on shape deformations. In this MR study we used a 3D shape representation technique, based on spherical harmonic functions, to analyze left and right amygdala-hippocampus shapes in each of 15 patients with schizophrenia and 15 healthy controls matched for age, gender, handedness and parental socioeconomic status. Left/right asymmetry was also measured for both shape and volume differences. Additionally, shape and volume measurements were combined in a composite analysis. There were no differences between groups in overall volume or shape. Left/right amygdala-hippocampal asymmetry, however, was significantly larger in patients than controls for both relative volume and shape. The local brain regions responsible for the left/right asymmetry differences in patients with schizophrenia were in the tail of the hippocampus (including both the inferior aspect adjacent to parahippocampal gyrus and the superior aspect adjacent to the lateral geniculate nucleus and more anteriorly to the cerebral peduncles) and in portions of the amygdala body (including the anterior-superior aspect adjacent to the basal nucleus). Also, in patients, increased volumetric asymmetry tended to be correlated with increased left/right shape asymmetry. Furthermore, a combined analysis of volume and shape asymmetry resulted in improved differentiation between groups. Classification function analyses correctly classified 70% of cases using volume, 73.3% using shape, and 87% using combined volume and shape measures. These findings suggest that shape provides important new information toward characterizing the pathophysiology of schizophrenia, and that combining volume and shape measures provides improved group discrimination in studies investigating brain abnormalities in schizophrenia. An evaluation of shape deformations also suggests local abnormalities in the amygdala-hippocampal complex in schizophrenia.
KW - Amygdala-hippocampal complex
KW - Hippocampus
KW - Magnetic resonance imaging (MRI)
KW - Neurodevelopmental abnormalities
KW - Schizophrenia
KW - Shape analysis
KW - Shape deformations
KW - Shape descriptors
KW - Three-dimensional (3D) shape techniques
UR - http://www.scopus.com/inward/record.url?scp=0037143844&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037143844&partnerID=8YFLogxK
U2 - 10.1016/S0925-4927(02)00025-2
DO - 10.1016/S0925-4927(02)00025-2
M3 - Article
C2 - 12165365
AN - SCOPUS:0037143844
SN - 0925-4927
VL - 115
SP - 15
EP - 35
JO - Psychiatry Research - Neuroimaging
JF - Psychiatry Research - Neuroimaging
IS - 1-2
ER -