TY - JOUR
T1 - An assistive technology system that provides personalized dressing support for people living with dementia
T2 - Capability study
AU - Burleson, Winslow
AU - Lozano, Cecil
AU - Ravishankar, Vijay
AU - Lee, Jisoo
AU - Mahoney, Diane
N1 - Publisher Copyright:
© Winslow Burleson, Cecil Lozano, Vijay Ravishankar, Jisoo Lee, Diane Mahoney.
PY - 2018/5
Y1 - 2018/5
N2 - Background: Individuals living with advancing stages of dementia (persons with dementia, PWDs) or other cognitive disorders do not have the luxury of remembering how to perform basic day-to-day activities, which in turn makes them increasingly dependent on the assistance of caregivers. Dressing is one of the most common and stressful activities provided by caregivers because of its complexity and privacy challenges posed during the process. Objective: In preparation for in-home trials with PWDs, the aim of this study was to develop and evaluate a prototype intelligent system, the DRESS prototype, to assess its ability to provide automated assistance with dressing that can afford independence and privacy to individual PWDs and potentially provide additional freedom to their caregivers (family members and professionals). Methods: This laboratory study evaluated the DRESS prototype's capacity to detect dressing events. These events were engaged in by 11 healthy participants simulating common correct and incorrect dressing scenarios. The events ranged from donning a shirt and pants inside out or backwards to partial dressing-typical issues that challenge a PWD and their caregivers. Results: A set of expected detections for correct dressing was prepared via video analysis of all participants' dressing behaviors. In the initial phases of donning either shirts or pants, the DRESS prototype missed only 4 out of 388 expected detections. The prototype's ability to recognize other missing detections varied across conditions. There were also some unexpected detections such as detection of the inside of a shirt as it was being put on. Throughout the study, detection of dressing events was adversely affected by the relatively smaller effective size of the markers at greater distances. Although the DRESS prototype incorrectly identified 10 of 22 cases for shirts, the prototype preformed significantly better for pants, incorrectly identifying only 5 of 22 cases. Further analyses identified opportunities to improve the DRESS prototype's reliability, including increasing the size of markers, minimizing garment folding or occlusions, and optimal positioning of participants with respect to the DRESS prototype. Conclusions: This study demonstrates the ability to detect clothing orientation and position and infer current state of dressing using a combination of sensors, intelligent software, and barcode tracking. With improvements identified by this study, the DRESS prototype has the potential to provide a viable option to provide automated dressing support to assist PWDs in maintaining their independence and privacy, while potentially providing their caregivers with the much-needed respite.
AB - Background: Individuals living with advancing stages of dementia (persons with dementia, PWDs) or other cognitive disorders do not have the luxury of remembering how to perform basic day-to-day activities, which in turn makes them increasingly dependent on the assistance of caregivers. Dressing is one of the most common and stressful activities provided by caregivers because of its complexity and privacy challenges posed during the process. Objective: In preparation for in-home trials with PWDs, the aim of this study was to develop and evaluate a prototype intelligent system, the DRESS prototype, to assess its ability to provide automated assistance with dressing that can afford independence and privacy to individual PWDs and potentially provide additional freedom to their caregivers (family members and professionals). Methods: This laboratory study evaluated the DRESS prototype's capacity to detect dressing events. These events were engaged in by 11 healthy participants simulating common correct and incorrect dressing scenarios. The events ranged from donning a shirt and pants inside out or backwards to partial dressing-typical issues that challenge a PWD and their caregivers. Results: A set of expected detections for correct dressing was prepared via video analysis of all participants' dressing behaviors. In the initial phases of donning either shirts or pants, the DRESS prototype missed only 4 out of 388 expected detections. The prototype's ability to recognize other missing detections varied across conditions. There were also some unexpected detections such as detection of the inside of a shirt as it was being put on. Throughout the study, detection of dressing events was adversely affected by the relatively smaller effective size of the markers at greater distances. Although the DRESS prototype incorrectly identified 10 of 22 cases for shirts, the prototype preformed significantly better for pants, incorrectly identifying only 5 of 22 cases. Further analyses identified opportunities to improve the DRESS prototype's reliability, including increasing the size of markers, minimizing garment folding or occlusions, and optimal positioning of participants with respect to the DRESS prototype. Conclusions: This study demonstrates the ability to detect clothing orientation and position and infer current state of dressing using a combination of sensors, intelligent software, and barcode tracking. With improvements identified by this study, the DRESS prototype has the potential to provide a viable option to provide automated dressing support to assist PWDs in maintaining their independence and privacy, while potentially providing their caregivers with the much-needed respite.
KW - Alzheimer disease
KW - Computer-assisted
KW - Disorders
KW - Image processing
KW - Neurocognitive
UR - http://www.scopus.com/inward/record.url?scp=85047559638&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047559638&partnerID=8YFLogxK
U2 - 10.2196/medinform.5587
DO - 10.2196/medinform.5587
M3 - Article
AN - SCOPUS:85047559638
SN - 2291-9694
VL - 20
JO - JMIR Medical Informatics
JF - JMIR Medical Informatics
IS - 5
M1 - e21
ER -