TY - GEN
T1 - An Efficient Spiking Neural Network for Recognizing Gestures with a DVS Camera on the Loihi Neuromorphic Processor
AU - Massa, Riccardo
AU - Marchisio, Alberto
AU - Martina, Maurizio
AU - Shafique, Muhammad
N1 - Funding Information:
This work has been partially supported by the Doctoral College Resilient Embedded Systems which is run jointly by TU Wien’s Faculty of Informatics and FH-Technikum Wien.
Publisher Copyright:
© 2020 IEEE.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/7
Y1 - 2020/7
N2 - Spiking Neural Networks (SNNs), the third generation NNs, have come under the spotlight for machine learning based applications due to their biological plausibility and reduced complexity compared to traditional artificial Deep Neural Networks (DNNs). These SNNs can be implemented with extreme energy efficiency on neuromorphic processors like the Intel Loihi research chip, and fed by event-based sensors, such as DVS cameras. However, DNNs with many layers can achieve relatively high accuracy on image classification and recognition tasks, as the research on learning rules for SNNs for real-world applications is still not mature. The accuracy results for SNNs are typically obtained either by converting the trained DNNs into SNNs, or by directly designing and training SNNs in the spiking domain. Towards the conversion from a DNN to an SNN, we perform a comprehensive analysis of such process, specifically designed for Intel Loihi, showing our methodology for the design of an SNN that achieves nearly the same accuracy results as its corresponding DNN. Towards the usage of the event-based sensors, we design a pre-processing method, evaluated for the DvsGesture dataset, which makes it possible to be used in the DNN domain. Hence, based on the outcome of the first analysis, we train a DNN for the pre-processed DvsGesture dataset, and convert it into the spike domain for its deployment on Intel Loihi, which enables real-time gesture recognition. The results show that our SNN achieves 89.64% classification accuracy and occupies only 37 Loihi cores.
AB - Spiking Neural Networks (SNNs), the third generation NNs, have come under the spotlight for machine learning based applications due to their biological plausibility and reduced complexity compared to traditional artificial Deep Neural Networks (DNNs). These SNNs can be implemented with extreme energy efficiency on neuromorphic processors like the Intel Loihi research chip, and fed by event-based sensors, such as DVS cameras. However, DNNs with many layers can achieve relatively high accuracy on image classification and recognition tasks, as the research on learning rules for SNNs for real-world applications is still not mature. The accuracy results for SNNs are typically obtained either by converting the trained DNNs into SNNs, or by directly designing and training SNNs in the spiking domain. Towards the conversion from a DNN to an SNN, we perform a comprehensive analysis of such process, specifically designed for Intel Loihi, showing our methodology for the design of an SNN that achieves nearly the same accuracy results as its corresponding DNN. Towards the usage of the event-based sensors, we design a pre-processing method, evaluated for the DvsGesture dataset, which makes it possible to be used in the DNN domain. Hence, based on the outcome of the first analysis, we train a DNN for the pre-processed DvsGesture dataset, and convert it into the spike domain for its deployment on Intel Loihi, which enables real-time gesture recognition. The results show that our SNN achieves 89.64% classification accuracy and occupies only 37 Loihi cores.
KW - Accuracy
KW - Conversion
KW - DVS Camera
KW - Event-Based Processing
KW - Gesture Recognition
KW - Loihi
KW - Machine Learning
KW - Neuromorphic Processor
KW - Spiking Neural Networks
UR - http://www.scopus.com/inward/record.url?scp=85093838060&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85093838060&partnerID=8YFLogxK
U2 - 10.1109/IJCNN48605.2020.9207109
DO - 10.1109/IJCNN48605.2020.9207109
M3 - Conference contribution
AN - SCOPUS:85093838060
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 International Joint Conference on Neural Networks, IJCNN 2020
Y2 - 19 July 2020 through 24 July 2020
ER -