An Empirical Study of API Misuses of Data-Centric Libraries

Akalanka Galappaththi, Sarah Nadi, Christoph Treude

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Developers rely on third-party library Application Programming Interfaces (APIs) when developing software. However, libraries typically come with assumptions and API usage constraints, whose violation results in API misuse. API misuses may result in crashes or incorrect behavior. Even though API misuse is a well-studied area, a recent study of API misuse of deep learning libraries showed that the nature of these misuses and their symptoms are different from misuses of traditional libraries, and as a result highlighted potential shortcomings of current misuse detection tools. We speculate that these observations may not be limited to deep learning API misuses but may stem from the data-centric nature of these APIs. Data-centric libraries often deal with diverse data structures, intricate processing workflows, and a multitude of parameters, which can make them inherently more challenging to use correctly. Therefore, understanding the potential misuses of these libraries is important to avoid unexpected application behavior. To this end, this paper contributes an empirical study of API misuses of five data-centric libraries that cover areas such as data processing, numerical computation, machine learning, and visualization. We identify misuses of these libraries by analyzing data from both Stack Overflow and GitHub. Our results show that many of the characteristics of API misuses observed for deep learning libraries extend to misuses of the data-centric library APIs we study. We also find that developers tend to misuse APIs from data-centric libraries, regardless of whether the API directive appears in the documentation. Overall, our work exposes the challenges of API misuse in data-centric libraries, rather than only focusing on deep learning libraries. Our collected misuses and their characterization lay groundwork for future research to help reduce misuses of these libraries.

Original languageEnglish (US)
Title of host publicationProceedings of the 18th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM 2024
PublisherIEEE Computer Society
Pages245-256
Number of pages12
ISBN (Electronic)9798400710476
DOIs
StatePublished - Oct 24 2024
Event18th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM 2024 - Barcelona, Spain
Duration: Oct 24 2024Oct 25 2024

Publication series

NameInternational Symposium on Empirical Software Engineering and Measurement
ISSN (Print)1949-3770
ISSN (Electronic)1949-3789

Conference

Conference18th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM 2024
Country/TerritorySpain
CityBarcelona
Period10/24/2410/25/24

Keywords

  • API misuse
  • data-centric libraries
  • empirical study

ASJC Scopus subject areas

  • Computer Science Applications
  • Software

Fingerprint

Dive into the research topics of 'An Empirical Study of API Misuses of Data-Centric Libraries'. Together they form a unique fingerprint.

Cite this