An ensemble deep learning approach to evaluate haptic delay from a single trial EEG data

Haneen Alsuradi, Mohamad Eid

Research output: Contribution to journalArticlepeer-review

Abstract

Haptic technologies are becoming increasingly valuable in Human-Computer interaction systems as they provide means of physical interaction with a remote or virtual environment. One of the persistent challenges in tele-haptic systems, communicating haptic information over a computer network, is the synchrony of the delivered haptic information with the rest of the sensory modalities. Delayed haptic feedback can have serious implications on the user performance and overall experience. Limited research efforts have been devoted to studying the implication of haptic delay on the human neural response and relating it to the overall haptic experience. Deep learning could offer autonomous brain activity interpretation in response to a haptic experience such as haptic delay. In this work, we propose an ensemble of 2D CNN and transformer models that is capable of detecting the presence and redseverity of haptic delay from a single-trial Electroencephalography data. Two EEG-based experiments involving visuo-haptic interaction tasks are proposed. The first experiment aims to collect data for detecting the presence of haptic delay during discrete force feedback using a bouncing ball on a racket simulation, while the second aims to collect data for detecting the severity level (none, mild, moderate, severe) of the haptic delay during continuous force feedback via grasping/releasing of an object in a bucket. The ensemble model showed a promising performance with an accuracy of 0.9142 ± 0.0157 for detecting haptic delay during discrete force feedback and 0.6625 ± 0.0067 for classifying the severity of haptic delay during continuous force feedback (4 levels). These results were obtained based on training the model with raw EEG data as well as their wavelet transform using several wavelet kernels. This study is a step forward towards developing cognitive evaluation of the user experience while interaction with haptic interfaces.

Original languageEnglish (US)
Article number1013043
JournalFrontiers in Robotics and AI
Volume9
DOIs
StatePublished - Sep 27 2022

Keywords

  • CNN
  • convolutional neural network
  • deep learning
  • EEG
  • haptics
  • neurohaptics
  • wavelet transform

ASJC Scopus subject areas

  • Computer Science Applications
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'An ensemble deep learning approach to evaluate haptic delay from a single trial EEG data'. Together they form a unique fingerprint.

Cite this