An Event-triggered Visual Servoing Predictive Control Strategy for the Surveillance of Contour-based Areas using Multirotor Aerial Vehicles

Sotirios N. Aspragkathos, Mario Sinani, George C. Karras, Fotis Panetsos, Kostas J. Kyriakopoulos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, an Event-triggered Image-based Visual Servoing Nonlinear Model Predictive Controller (ET-IBVS-NMPC) for multirotor aerial vehicles is presented. The proposed scheme is developed for the autonomous surveillance of contour-based areas with different characteristics (e.g. forest paths, coastlines, road pavements). For this purpose, an appropriately trained Deep Neural Network (DNN) is employed for the accurate detection of the contours. In an effort to reduce the remarkably large computational cost required by an IBVS-NMPC algorithm, a triggering condition is designed to define when the Optimal Control Problem (OCP) should be resolved and new control inputs will be calculated. Between two successive triggering instants, the control input trajectory is applied to the robot in an open-loop fashion, which means that no control input computations are required. As a result, the system's computing effort and energy consumption are lowered, while its autonomy and flight duration are increased. The visibility and input constraints, as well as the external disturbances, are all taken into account throughout the control design. The efficacy of the proposed strategy is demonstrated through a series of real-time experiments using a quadrotor and an octorotor both equipped with a monocular downward looking camera.

Original languageEnglish (US)
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2203-2210
Number of pages8
ISBN (Electronic)9781665479271
DOIs
StatePublished - 2022
Event2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Duration: Oct 23 2022Oct 27 2022

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2022-October
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Country/TerritoryJapan
CityKyoto
Period10/23/2210/27/22

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'An Event-triggered Visual Servoing Predictive Control Strategy for the Surveillance of Contour-based Areas using Multirotor Aerial Vehicles'. Together they form a unique fingerprint.

Cite this