An expansion of the non-coding genome and its regulatory potential underlies vertebrate neuronal diversity

Michael Closser, Yuchun Guo, Ping Wang, Tulsi Patel, Sumin Jang, Jennifer Hammelman, Joriene C. De Nooij, Rachel Kopunova, Esteban O. Mazzoni, Yijun Ruan, David K. Gifford, Hynek Wichterle

Research output: Contribution to journalArticlepeer-review


Proper assembly and function of the nervous system requires the generation of a uniquely diverse population of neurons expressing a cell-type-specific combination of effector genes that collectively define neuronal morphology, connectivity, and function. How countless partially overlapping but cell-type-specific patterns of gene expression are controlled at the genomic level remains poorly understood. Here we show that neuronal genes are associated with highly complex gene regulatory systems composed of independent cell-type- and cell-stage-specific regulatory elements that reside in expanded non-coding genomic domains. Mapping enhancer-promoter interactions revealed that motor neuron enhancers are broadly distributed across the large chromatin domains. This distributed regulatory architecture is not a unique property of motor neurons but is employed throughout the nervous system. The number of regulatory elements increased dramatically during the transition from invertebrates to vertebrates, suggesting that acquisition of new enhancers might be a fundamental process underlying the evolutionary increase in cellular complexity.

Original languageEnglish (US)
Pages (from-to)70-85.e6
Issue number1
StatePublished - Jan 5 2022


  • Isl1
  • Lhx3
  • cell fate specification
  • cellular diversity
  • chromatin interactions
  • enhancers
  • gene deserts
  • gene regulation
  • neuronal development
  • noncoding DNA

ASJC Scopus subject areas

  • General Neuroscience


Dive into the research topics of 'An expansion of the non-coding genome and its regulatory potential underlies vertebrate neuronal diversity'. Together they form a unique fingerprint.

Cite this