TY - JOUR
T1 - An explicit martingale version of the one-dimensional Brenier theorem
AU - Henry-Labordère, Pierre
AU - Touzi, Nizar
N1 - Funding Information:
The authors are grateful to Mathias Beiglböck and Xiaolu Tan for fruitful comments, and for pointing out subtle gaps in a previous version. This work benefits from the financial support of the ERC Advanced Grant 321111, and the Chairs Financial Risk and Finance and Sustainable Development.
Publisher Copyright:
© 2016, Springer-Verlag Berlin Heidelberg.
PY - 2016/7/1
Y1 - 2016/7/1
N2 - By investigating model-independent bounds for exotic options in financial mathematics, a martingale version of the Monge–Kantorovich mass transport problem was introduced in (Beiglböck et al. in Finance Stoch. 17:477–501, 2013; Galichon et al. in Ann. Appl. Probab. 24:312–336, 2014). Further, by suitable adaptation of the notion of cyclical monotonicity, Beiglböck and Juillet (Ann. Probab. 44:42–106, 2016) obtained an extension of the one-dimensional Brenier theorem to the present martingale version. In this paper, we complement the previous work by extending the so-called Spence–Mirrlees condition to the case of martingale optimal transport. Under some technical conditions on the starting and the target measures, we provide an explicit characterization of the corresponding optimal martingale transference plans both for the lower and upper bounds. These explicit extremal probability measures coincide with the unique left- and right-monotone martingale transference plans introduced in (Beiglböck and Juillet in Ann. Probab. 44:42–106, 2016). Our approach relies on the (weak) duality result stated in (Beiglböck et al. in Finance Stoch. 17:477–501, 2013), and provides as a by-product an explicit expression for the corresponding optimal semi-static hedging strategies. We finally provide an extension to the multiple marginals case.
AB - By investigating model-independent bounds for exotic options in financial mathematics, a martingale version of the Monge–Kantorovich mass transport problem was introduced in (Beiglböck et al. in Finance Stoch. 17:477–501, 2013; Galichon et al. in Ann. Appl. Probab. 24:312–336, 2014). Further, by suitable adaptation of the notion of cyclical monotonicity, Beiglböck and Juillet (Ann. Probab. 44:42–106, 2016) obtained an extension of the one-dimensional Brenier theorem to the present martingale version. In this paper, we complement the previous work by extending the so-called Spence–Mirrlees condition to the case of martingale optimal transport. Under some technical conditions on the starting and the target measures, we provide an explicit characterization of the corresponding optimal martingale transference plans both for the lower and upper bounds. These explicit extremal probability measures coincide with the unique left- and right-monotone martingale transference plans introduced in (Beiglböck and Juillet in Ann. Probab. 44:42–106, 2016). Our approach relies on the (weak) duality result stated in (Beiglböck et al. in Finance Stoch. 17:477–501, 2013), and provides as a by-product an explicit expression for the corresponding optimal semi-static hedging strategies. We finally provide an extension to the multiple marginals case.
KW - Martingale optimal transport problem
KW - Model-independent pricing
KW - Robust superreplication theorem
UR - http://www.scopus.com/inward/record.url?scp=84964344511&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964344511&partnerID=8YFLogxK
U2 - 10.1007/s00780-016-0299-x
DO - 10.1007/s00780-016-0299-x
M3 - Article
AN - SCOPUS:84964344511
SN - 0949-2984
VL - 20
SP - 635
EP - 668
JO - Finance and Stochastics
JF - Finance and Stochastics
IS - 3
ER -