Abstract
Integration is a central event in the replication of retroviruses, yet≥90% of HIV-1 reverse transcripts fail to integrate, resulting in accumulation of unintegrated viral DNA in cells. However, understanding what role, if any, unintegrated viral DNA plays in the natural history of HIV-1 has remained elusive. Unintegrated HIV-1 DNA is reported to possess a limited capacity for gene expression restricted to early gene products and is considered a replicative dead end. Although the majority of peripheral blood CD4+T cells are refractory to infection, nonactivated CD4+T cells present in lymphoid and mucosal tissues are major targets for infection. Treatment with cytokine interleukin-2 (IL-2), IL-4, IL-7, or IL-15 renders CD4+T cells permissive to HIV-1 infection in the absence of cell activation and proliferation and provides a useful model for infection of resting CD4+T cells. We found that infection of cytokine-treated resting CD4+T cells in the presence of raltegravir or with integrase active-site mutant HIV-1 yielded de novo virus production following subsequent T cell activation. Infection with integration-competent HIV-1 naturally generated a population of cells generating virus from unintegrated DNA. Latent infection persisted for several weeks and could be activated to virus production by a combination of a histone deacetylase inhibitor and a protein kinase C activator or by T cell activation. HIV-1 Vpr was essential for unintegrated HIV-1 gene expression and de novo virus production in this system. Bypassing integration by this mechanism may allow the preservation of genetic information that otherwise would be lost.
Original language | English (US) |
---|---|
Pages (from-to) | 12701-12720 |
Number of pages | 20 |
Journal | Journal of virology |
Volume | 87 |
Issue number | 23 |
DOIs | |
State | Published - Dec 2013 |
ASJC Scopus subject areas
- Microbiology
- Immunology
- Insect Science
- Virology