An O(1) scheduling algorithm for variable-size packet switching systems

Shunyuan Ye, Yanming Shen, Shivendra Panwar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Internet traffic has increased at a very fast pace in recent years. The traffic demand requires that future packet switching systems should be able to switch packets in a very short time, i.e., just a few nanoseconds. Algorithms with lower computation complexity are more desirable for this high-speed switching design. Among the existing algorithms that can achieve 100% throughut for input-queued switches for any admissible Bernoulli traffic, ALGO3 [1] and EMHW [2] have the lowest computation complexity, which is O(logN), where N is the number of ports in the switch. In this paper, we propose a randomized scheduling algorithm, which can also stabilize the system for any admissible traffic that satisfies the strong law of large number. The algorithm has a complexity of O(1). Since the complexity does not increase with the size of a switch, the algorithm is highly scalable and a good choice for future high-speed switch designs. We also show that the algorithm can be implemented in a distributed way by using a low-rate control channel. Simulation results show that the algorithm can provide a good delay performance as compared to algorithms with higher computation complexity.

Original languageEnglish (US)
Title of host publication2010 48th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2010
Pages1683-1690
Number of pages8
DOIs
StatePublished - 2010
Event48th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2010 - Monticello, IL, United States
Duration: Sep 29 2010Oct 1 2010

Publication series

Name2010 48th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2010

Other

Other48th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2010
Country/TerritoryUnited States
CityMonticello, IL
Period9/29/1010/1/10

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'An O(1) scheduling algorithm for variable-size packet switching systems'. Together they form a unique fingerprint.

Cite this