TY - GEN
T1 - An optimal lower bound on the communication complexity of Gap-Hamming-Distance
AU - Chakrabarti, Amit
AU - Regev, Oded
PY - 2011
Y1 - 2011
N2 - We prove an optimal Ω(n) lower bound on the randomized communication complexity of the much-studied Gap-Hamming-Distance problem. As a consequence, we obtain essentially optimal multi-pass space lower bounds in the data stream model for a number of fundamental problems, including the estimation of frequency moments. The Gap-Hamming-Distance problem is a communication problem, wherein Alice and Bob receive n-bit strings x and y, respectively. They are promised that the Hamming distance between x and y is either at least n/2+√n or at most n/2-√n, and their goal is to decide which of these is the case. Since the formal presentation of the problem by Indyk and Woodruff (FOCS, 2003), it had been conjectured that the naive protocol, which uses n bits of communication, is asymptotically optimal. The conjecture was shown to be true in several special cases, e.g., when the communication is deterministic, or when the number of rounds of communication is limited. The proof of our aforementioned result, which settles this conjecture fully, is based on a new geometric statement regarding correlations in Gaussian space, related to a result of C. Borell (1985). To prove this geometric statement, we show that random projections of not-too-small sets in Gaussian space are close to a mixture of translated normal variables.
AB - We prove an optimal Ω(n) lower bound on the randomized communication complexity of the much-studied Gap-Hamming-Distance problem. As a consequence, we obtain essentially optimal multi-pass space lower bounds in the data stream model for a number of fundamental problems, including the estimation of frequency moments. The Gap-Hamming-Distance problem is a communication problem, wherein Alice and Bob receive n-bit strings x and y, respectively. They are promised that the Hamming distance between x and y is either at least n/2+√n or at most n/2-√n, and their goal is to decide which of these is the case. Since the formal presentation of the problem by Indyk and Woodruff (FOCS, 2003), it had been conjectured that the naive protocol, which uses n bits of communication, is asymptotically optimal. The conjecture was shown to be true in several special cases, e.g., when the communication is deterministic, or when the number of rounds of communication is limited. The proof of our aforementioned result, which settles this conjecture fully, is based on a new geometric statement regarding correlations in Gaussian space, related to a result of C. Borell (1985). To prove this geometric statement, we show that random projections of not-too-small sets in Gaussian space are close to a mixture of translated normal variables.
KW - communication complexity
KW - corruption
KW - data streams
KW - gap-hamming-distance
KW - gaussian noise correlation
KW - lower bounds
UR - http://www.scopus.com/inward/record.url?scp=79959768278&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79959768278&partnerID=8YFLogxK
U2 - 10.1145/1993636.1993644
DO - 10.1145/1993636.1993644
M3 - Conference contribution
AN - SCOPUS:79959768278
SN - 9781450306911
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 51
EP - 60
BT - STOC'11 - Proceedings of the 43rd ACM Symposium on Theory of Computing
PB - Association for Computing Machinery
T2 - 43rd ACM Symposium on Theory of Computing, STOC 2011
Y2 - 6 June 2011 through 8 June 2011
ER -