Abstract
For 10,000a €‰years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
Original language | English (US) |
---|---|
Pages (from-to) | 393-398 |
Number of pages | 6 |
Journal | Nature |
Volume | 491 |
Issue number | 7424 |
DOIs | |
State | Published - Nov 15 2012 |
ASJC Scopus subject areas
- General
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Analyses of pig genomes provide insight into porcine demography and evolution'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Nature, Vol. 491, No. 7424, 15.11.2012, p. 393-398.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Analyses of pig genomes provide insight into porcine demography and evolution
AU - Groenen, Martien A.M.
AU - Archibald, Alan L.
AU - Uenishi, Hirohide
AU - Tuggle, Christopher K.
AU - Takeuchi, Yasuhiro
AU - Rothschild, Max F.
AU - Rogel-Gaillard, Claire
AU - Park, Chankyu
AU - Milan, Denis
AU - Megens, Hendrik Jan
AU - Li, Shengting
AU - Larkin, Denis M.
AU - Kim, Heebal
AU - Frantz, Laurent A.F.
AU - Caccamo, Mario
AU - Ahn, Hyeonju
AU - Aken, Bronwen L.
AU - Anselmo, Anna
AU - Anthon, Christian
AU - Auvil, Loretta
AU - Badaoui, Bouabid
AU - Beattie, Craig W.
AU - Bendixen, Christian
AU - Berman, Daniel
AU - Blecha, Frank
AU - Blomberg, Jonas
AU - Bolund, Lars
AU - Bosse, Mirte
AU - Botti, Sara
AU - Bujie, Zhan
AU - Bystrom, Megan
AU - Capitanu, Boris
AU - Carvalho-Silva, Denise
AU - Chardon, Patrick
AU - Chen, Celine
AU - Cheng, Ryan
AU - Choi, Sang Haeng
AU - Chow, William
AU - Clark, Richard C.
AU - Clee, Christopher
AU - Crooijmans, Richard P.M.A.
AU - Dawson, Harry D.
AU - Dehais, Patrice
AU - De Sapio, Fioravante
AU - Dibbits, Bert
AU - Drou, Nizar
AU - Du, Zhi Qiang
AU - Eversole, Kellye
AU - Fadista, Joao
AU - Fairley, Susan
AU - Faraut, Thomas
AU - Faulkner, Geoffrey J.
AU - Fowler, Katie E.
AU - Fredholm, Merete
AU - Fritz, Eric
AU - Gilbert, James G.R.
AU - Giuffra, Elisabetta
AU - Gorodkin, Jan
AU - Griffin, Darren K.
AU - Harrow, Jennifer L.
AU - Hayward, Alexander
AU - Howe, Kerstin
AU - Hu, Zhi Liang
AU - Humphray, Sean J.
AU - Hunt, Toby
AU - Hornshoøj, Henrik
AU - Jeon, Jin Tae
AU - Jern, Patric
AU - Jones, Matthew
AU - Jurka, Jerzy
AU - Kanamori, Hiroyuki
AU - Kapetanovic, Ronan
AU - Kim, Jaebum
AU - Kim, Jae Hwan
AU - Kim, Kyu Won
AU - Kim, Tae Hun
AU - Larson, Greger
AU - Lee, Kyooyeol
AU - Lee, Kyung Tai
AU - Leggett, Richard
AU - Lewin, Harris A.
AU - Li, Yingrui
AU - Liu, Wansheng
AU - Loveland, Jane E.
AU - Lu, Yao
AU - Lunney, Joan K.
AU - Ma, Jian
AU - Madsen, Ole
AU - Mann, Katherine
AU - Matthews, Lucy
AU - McLaren, Stuart
AU - Morozumi, Takeya
AU - Murtaugh, Michael P.
AU - Narayan, Jitendra
AU - Nguyen, Dinh Truong
AU - Ni, Peixiang
AU - Oh, Song Jung
AU - Onteru, Suneel
AU - Panitz, Frank
AU - Park, Eung Woo
AU - Park, Hong Seog
AU - Pascal, Geraldine
AU - Paudel, Yogesh
AU - Perez-Enciso, Miguel
AU - Ramirez-Gonzalez, Ricardo
AU - Reecy, James M.
AU - Rodriguez-Zas, Sandra
AU - Rohrer, Gary A.
AU - Rund, Lauretta
AU - Sang, Yongming
AU - Schachtschneider, Kyle
AU - Schraiber, Joshua G.
AU - Schwartz, John
AU - Scobie, Linda
AU - Scott, Carol
AU - Searle, Stephen
AU - Servin, Bertrand
AU - Southey, Bruce R.
AU - Sperber, Goran
AU - Stadler, Peter
AU - Sweedler, Jonathan V.
AU - Tafer, Hakim
AU - Thomsen, Bo
AU - Wali, Rashmi
AU - Wang, Jian
AU - Wang, Jun
AU - White, Simon
AU - Xu, Xun
AU - Yerle, Martine
AU - Zhang, Guojie
AU - Zhang, Jianguo
AU - Zhang, Jie
AU - Zhao, Shuhong
AU - Rogers, Jane
AU - Churcher, Carol
AU - Schook, Lawrence B.
N1 - Funding Information: Acknowledgements The authors recognize the contributions of the following individuals towards the establishment of the Swine Genome Sequencing Consortium and their leadership in realizing this effort: J. Jen, P. J. Burfening, D. Hamernik, R. A. Easter, N. Merchen, R. D. Green, J. Cassady, B. Harlizius, M. Boggess and M. Stratton. Also the authors acknowledge A. Hernandez, C. Wright at the University of Illinois Keck Center for Comparative and Functional Genomics; N. Bruneau and Prof. Ning Li for their contribution to PERV studies; D. Goodband and D. Berman for their efforts in genome annotation; D. Grafham of the Welcome Trust Sanger Institute for his efforts in the genome assembly and J. Hedegaard, M. Nielsen and R. O. Nielsen for their contribution on the miRNA analysis. We also recognize contributions from the National Institute of Agrobiological Sciences and the Institute of Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries, Tsukuba, Japan, H. Shinkai, T. Eguchi-Ogawa, K. Suzuki, D. Toki, T. Matsumoto, N. Fujishima-Kanaya, A. Mikawa, N. Okumura, M. Tanaka-Matsuda, K. Kurita, H. Sasaki, K. Kamiya, A. Kikuta, T. Bito and N. Fujitsuka. We acknowledge support from the USDA CSREES/NIFA Swine Genome Coordination Program, College of Agricultural,Consumer andEnvironmental Sciences, University of Illinois; College of Agriculture and Life Sciences, Iowa State University; North Carolina Agricultural Research Service; USA National Pork Board; Iowa Pork Producers Association; North Carolina Pork Council; Danish government; TOPIGS Research Center IPG The Netherlands; INRA Genescope, France; Wellcome Trust Sanger Institute and BGI. We are grateful to the genome team at NCBI for their assistance in checking the Sscrofa10.2 assembly and for their independent annotation of the sequence. This project was also partially supported by grants: BBSRC grants (Ensembl): BB/E010520/1, BB/E010520/2, BB/I025328/1; EC FP6 ‘Cutting edge genomics for sustainable animal breeding (SABRE)’; EC FP7 ‘Quantomics’; C. J. Martin Overseas Based Biomedical Fellowship from the Australian NHMRC (575585); BBSRC (BB/H005935/1); Next-Generation BioGreen 21 Program (PJ009019, PJ0081162012), RDA, Republic of Korea; Consolider programme from Ministry of Research (Spain); NIH R13 RR020283A; NIH R13 RR032267A; ILLU 535-314; ILLU 538-379; ILLU-538-312; ILLU-538-34; CSREES, NIFA for funding genome coordination activities; NIH grant 5 P41LM006252; MAFF grants (IRPPIAUGT-AG 1101/1201); USDA-NRI-2009-35205-05192; USDA-NRSP8 Bioinformatics Coordination and Pig Genome Coordination funds; US-UK Fulbright Commission; Next-Generation BioGreen 21 (no. PJ0080892011) Program, RDA, Republic of Korea; USDA-ARS Project Plan 1235-51000-055-00D; USDA-ARS Project Plan 1265-32000-098-00D; USDA-NRI-2006-35204-17337 USDA AFRI NIFA/DHS 2010-39559-21860; NIH P20-RR017686; USDA ARS; USDA-NRSP8 Bioinformatics; USDA ARS Beltsville Area Summer Undergraduate Fellowships; BBSRC grant BB/ G004013/1; NSFC Outstanding Youth grant (31025026); The Swedish Research Council FORMAS; The Swedish Wenner-Gren Foundations; European Commission FP6 funded project LSHB-CT-2006-037377; BioGreen21, RDA grant PJ00622901; BioGreen21, RDA grant PJ00622902; BioGreen21, RDA grant PJ00622903; BioGreen21, RDA grant PJ00622903. The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 249894 (SelSweep); NIH P20-RR017686; NIH NIDA P30 DA018310; NIH NIDA R21 DA027548; NIAS, RDA grant PJ001758; BioGreen21, RDA grant PJ006229; NIAS, RDA grant 20040301034467; ANR grant ANR07-GANI-001 DeliSus; Danish funding agencies: FTP/DFF (09-066598); DSF/Strategic Growth Technologies (09-067036); the Lundbeck foundation (374/06); DCSC (Scientific Computing); The Funds for International Cooperation from the Ministry of Science and Technology of China 2002AA229061; PL-Grid project: POIG.02.03.00-00-007/08-00 ‘Genome Assembly’; USDA-NIFA-CREES AG 2006-35216-16668; AG 2002-34480-11828; AG 2003-34480-13172; AG 2004-34480-14417; AG 2005-34480-15939; AG 2006-34480-17150; AG 2008-34480-19328; AG 2009-34480-19875; AG 2002-35205-12712;somaticcellgenomics:Integrating QTL Discovery and Validation; AG 2008-35205-18769; AG 2009-65205-05642; AG 2004-3881-02193; AG 2011-67015-30229; AG 58-5438-2-313; AG 58-5438-7-317; and AG 58-0208-7-149; NIH grant 5 P41 LM006252.
PY - 2012/11/15
Y1 - 2012/11/15
N2 - For 10,000a €‰years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
AB - For 10,000a €‰years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
UR - http://www.scopus.com/inward/record.url?scp=84869003221&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84869003221&partnerID=8YFLogxK
U2 - 10.1038/nature11622
DO - 10.1038/nature11622
M3 - Article
C2 - 23151582
AN - SCOPUS:84869003221
SN - 0028-0836
VL - 491
SP - 393
EP - 398
JO - Nature
JF - Nature
IS - 7424
ER -