ANALYSIS OF LEARNING A FLOW-BASED GENERATIVE MODEL FROM LIMITED SAMPLE COMPLEXITY

Hugo Cui, Florent Krzakala, Eric Vanden-Eijnden, Lenka Zdeborová

Research output: Contribution to conferencePaperpeer-review

Abstract

We study the problem of training a flow-based generative model, parametrized by a two-layer autoencoder, to sample from a high-dimensional Gaussian mixture. We provide a sharp end-to-end analysis of the problem. First, we provide a tight closed-form characterization of the learnt velocity field, when parametrized by a shallow denoising auto-encoder trained on a finite number n of samples from the target distribution. Building on this analysis, we provide a sharp description of the corresponding generative flow, which pushes the base Gaussian density forward to an approximation of the target density. In particular, we provide closed-form formulae for the distance between the means of the generated mixture and the mean of the target mixture, which we show decays as Θn(1/n). Finally, this rate is shown to be in fact Bayes-optimal.

Original languageEnglish (US)
StatePublished - 2024
Event12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria
Duration: May 7 2024May 11 2024

Conference

Conference12th International Conference on Learning Representations, ICLR 2024
Country/TerritoryAustria
CityHybrid, Vienna
Period5/7/245/11/24

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'ANALYSIS OF LEARNING A FLOW-BASED GENERATIVE MODEL FROM LIMITED SAMPLE COMPLEXITY'. Together they form a unique fingerprint.

Cite this