TY - GEN
T1 - Analysis of morphological changes of lamina cribrosa under acute intraocular pressure change
AU - Ravier, Mathilde
AU - Hong, Sungmin
AU - Girot, Charly
AU - Ishikawa, Hiroshi
AU - Tauber, Jenna
AU - Wollstein, Gadi
AU - Schuman, Joel
AU - Fishbaugh, James
AU - Gerig, Guido
N1 - Publisher Copyright:
© Springer Nature Switzerland AG 2018.
PY - 2018
Y1 - 2018
N2 - Glaucoma is the second leading cause of blindness worldwide. Despite active research efforts driven by the importance of diagnosis and treatment of the optic degenerative neuropathy, the relationship between structural and functional changes along the glaucomateous evolution are still not clearly understood. Dynamic changes of the lamina cribrosa (LC) in the presence of intraocular pressure (IOP) were suggested to play a significant role in optic nerve damage, which motivates the proposed research to explore the relationship of changes of the 3D structure of the LC collagen meshwork to clinical diagnosis. We introduce a framework to quantify 3D dynamic morphological changes of the LC under acute IOP changes in a series of swept-source optical coherence tomography (SS-OCT) scans taken under different pressure states. Analysis of SS-OCT images faces challenges due to low signal-to-noise ratio, anisotropic resolution, and observation variability caused by subject and ocular motions. We adapt unbiased diffeomorphic atlas building which serves multiple purposes critical for this analysis. Analysis of deformation fields yields desired global and local information on pressure-induced geometric changes. Deformation variability, estimated with repeated images of a healthy volunteer without IOP elevation, is found to be a magnitude smaller than pressure-induced changes and thus illustrates feasibility of the proposed framework. Results in a clinical study with healthy, glaucoma suspect, and glaucoma subjects demonstrate the potential of the proposed method for non-invasive in vivo analysis of LC dynamics, potentially leading to early prediction and diagnosis of glaucoma.
AB - Glaucoma is the second leading cause of blindness worldwide. Despite active research efforts driven by the importance of diagnosis and treatment of the optic degenerative neuropathy, the relationship between structural and functional changes along the glaucomateous evolution are still not clearly understood. Dynamic changes of the lamina cribrosa (LC) in the presence of intraocular pressure (IOP) were suggested to play a significant role in optic nerve damage, which motivates the proposed research to explore the relationship of changes of the 3D structure of the LC collagen meshwork to clinical diagnosis. We introduce a framework to quantify 3D dynamic morphological changes of the LC under acute IOP changes in a series of swept-source optical coherence tomography (SS-OCT) scans taken under different pressure states. Analysis of SS-OCT images faces challenges due to low signal-to-noise ratio, anisotropic resolution, and observation variability caused by subject and ocular motions. We adapt unbiased diffeomorphic atlas building which serves multiple purposes critical for this analysis. Analysis of deformation fields yields desired global and local information on pressure-induced geometric changes. Deformation variability, estimated with repeated images of a healthy volunteer without IOP elevation, is found to be a magnitude smaller than pressure-induced changes and thus illustrates feasibility of the proposed framework. Results in a clinical study with healthy, glaucoma suspect, and glaucoma subjects demonstrate the potential of the proposed method for non-invasive in vivo analysis of LC dynamics, potentially leading to early prediction and diagnosis of glaucoma.
UR - http://www.scopus.com/inward/record.url?scp=85054081700&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054081700&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-00934-2_41
DO - 10.1007/978-3-030-00934-2_41
M3 - Conference contribution
AN - SCOPUS:85054081700
SN - 9783030009335
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 364
EP - 371
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
A2 - Fichtinger, Gabor
A2 - Davatzikos, Christos
A2 - Alberola-López, Carlos
A2 - Frangi, Alejandro F.
A2 - Schnabel, Julia A.
PB - Springer Verlag
T2 - 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Y2 - 16 September 2018 through 20 September 2018
ER -