TY - GEN
T1 - Analysis of privacy loss in distributed constraint optimization
AU - Greenstadt, Rachel
AU - Pearce, Jonathan P.
AU - Tambe, Milind
PY - 2006
Y1 - 2006
N2 - Distributed Constraint Optimization (DCOP) is rapidly emerging as a prominent technique for multiagent coordination. However, despite agent privacy being a key motivation for applying DCOPs in many applications, rigorous quantitative evaluations of privacy loss in DCOP algorithms have been lacking. Recently, [Maheswaran et al. 2005] introduced a framework for quantitative evaluations of privacy in DCOP algorithms, showing that some DCOP algorithms lose more privacy than purely centralized approaches and questioning the motivation for applying DCOPs. This paper addresses the question of whether state-of-the art DCOP algorithms suffer from a similar shortcoming by investigating several of the most efficient DCOP algorithms, including both DPOP and ADOPT. Furthermore, while previous work investigated the impact on efficiency of distributed contraint reasoning design decisions (e.g. constraint-graph topology, asynchrony, message-contents), this paper examines the privacy aspect of such decisions, providing an improved understanding of privacy-efficiency tradeoffs.
AB - Distributed Constraint Optimization (DCOP) is rapidly emerging as a prominent technique for multiagent coordination. However, despite agent privacy being a key motivation for applying DCOPs in many applications, rigorous quantitative evaluations of privacy loss in DCOP algorithms have been lacking. Recently, [Maheswaran et al. 2005] introduced a framework for quantitative evaluations of privacy in DCOP algorithms, showing that some DCOP algorithms lose more privacy than purely centralized approaches and questioning the motivation for applying DCOPs. This paper addresses the question of whether state-of-the art DCOP algorithms suffer from a similar shortcoming by investigating several of the most efficient DCOP algorithms, including both DPOP and ADOPT. Furthermore, while previous work investigated the impact on efficiency of distributed contraint reasoning design decisions (e.g. constraint-graph topology, asynchrony, message-contents), this paper examines the privacy aspect of such decisions, providing an improved understanding of privacy-efficiency tradeoffs.
UR - http://www.scopus.com/inward/record.url?scp=33750742251&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750742251&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:33750742251
SN - 1577352815
SN - 9781577352815
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 647
EP - 653
BT - Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
T2 - 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
Y2 - 16 July 2006 through 20 July 2006
ER -