Abstract
This paper considers an application of the decentralized adaptive output feedback scheme developed in [1] to maintain global robustness to parametric and dynamic uncertainties among interconnections in large-scale power systems and also rejection of any bounded, unmeasurable disturbances entering the system. The proposed design utilizes only feedback from local rotor angle measurements. The scheme is applied to a two axis (fourth order) model of the generator with a second order turbine/governor model and an IEEE type I excitation control (fifth order) for each subsystem. The design presented is also applicable to higher order models of the generator and turbine/governor system. Furthermore, the design methodology proposed here obviates the need for controller redesign and therefore maintains robust connective stability if individual subsystems are appended or removed.
Original language | English (US) |
---|---|
Pages (from-to) | 1585-1590 |
Number of pages | 6 |
Journal | Proceedings of the IEEE Conference on Decision and Control |
Volume | 2 |
State | Published - 1995 |
Event | Proceedings of the 1995 34th IEEE Conference on Decision and Control. Part 1 (of 4) - New Orleans, LA, USA Duration: Dec 13 1995 → Dec 15 1995 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Modeling and Simulation
- Control and Optimization