Abstract
This paper presents an application of the robust adaptive design procedure developed in [1] to flexible joint manipulators. The design guarantees robustness to parametric and dynamic uncertainties and also rejects any bounded, unmeasurable disturbances entering the system. In the strict matching case, the scheme can be used to design robust controllers for robotic manipulators. The design is extended to systems transformable to a special strict feedback form. The proposed scheme when applied to multi-link robotic manipulators with joint flexibility guarantees a robust performance even if the Coriolis, centrifugal, joint flexibility and friction terms in the manipulator dynamics are completely unknown.
Original language | English (US) |
---|---|
Pages (from-to) | 2829-2834 |
Number of pages | 6 |
Journal | Proceedings of the IEEE Conference on Decision and Control |
Volume | 3 |
State | Published - 1995 |
Event | Proceedings of the 1995 34th IEEE Conference on Decision and Control. Part 1 (of 4) - New Orleans, LA, USA Duration: Dec 13 1995 → Dec 15 1995 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Modeling and Simulation
- Control and Optimization