Abstract
The application of a supervisory system identification scheme for flexible structures is considered in this article. The method is based upon quantifying parameterized models which interpolate partial impulse response sequences. This approach always produces a stable system function for rational models, and both minimum phase and nonminimum phase systems are admissible. A supervisory scheme eliminates some of the attainable models through a comparison of their dc-gains, and further reduces the order of the identified system by neglecting the near pole/zero cancellations in regions close to the origin of the unit disk, or with negative real z values. A review of this technique as it applies to flexible structures, and applications of this algorithm to flexible structures are presented.
Original language | English (US) |
---|---|
Pages (from-to) | 1423-1427 |
Number of pages | 5 |
Journal | Proceedings of the American Control Conference |
Volume | 2 |
State | Published - 1995 |
Event | Proceedings of the 1995 American Control Conference. Part 1 (of 6) - Seattle, WA, USA Duration: Jun 21 1995 → Jun 23 1995 |
ASJC Scopus subject areas
- Electrical and Electronic Engineering