Approximate message passing with consistent parameter estimation and applications to sparse learning

Ulugbek S. Kamilov, Sundeep Rangan, Alyson K. Fletcher, Michael Unser

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider the estimation of an i.i.d. vector x ε ℝn from measurements y ε ℝm obtained by a general cascade model consisting of a known linear transform followed by a probabilistic componentwise (possibly nonlinear) measurement channel. We present a method, called adaptive generalized approximate message passing (Adaptive GAMP), that enables joint learning of the statistics of the prior and measurement channel along with estimation of the unknown vector x. Our method can be applied to a large class of learning problems including the learning of sparse priors in compressed sensing or identification of linear-nonlinear cascade models in dynamical systems and neural spiking processes. We prove that for large i.i.d. Gaussian transform matrices the asymptotic componentwise behavior of the adaptive GAMP algorithm is predicted by a simple set of scalar state evolution equations. This analysis shows that the adaptive GAMP method can yield asymptotically consistent parameter estimates, which implies that the algorithm achieves a reconstruction quality equivalent to the oracle algorithm that knows the correct parameter values. The adaptive GAMP methodology thus provides a systematic, general and computationally efficient method applicable to a large range of complex linear-nonlinear models with provable guarantees.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages2438-2446
Number of pages9
StatePublished - 2012
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: Dec 3 2012Dec 6 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume3
ISSN (Print)1049-5258

Other

Other26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
CountryUnited States
CityLake Tahoe, NV
Period12/3/1212/6/12

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'Approximate message passing with consistent parameter estimation and applications to sparse learning'. Together they form a unique fingerprint.

Cite this