Approximation algorithms for aversion k-clustering via local k-median

Anupam Gupta, Guru Guruganesh, Melanie Schmidt

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In the aversion k-clustering problem, given a metric space, we want to cluster the points into k clusters. The cost incurred by each point is the distance to the furthest point in its cluster, and the cost of the clustering is the sum of all these per-point-costs. This problem is motivated by questions in generating automatic abstractions of extensive-form games. We reduce this problem to a "local" k-median problem where each facility has a prescribed radius and can only connect to clients within that radius. Our main results is a constant-factor approximation algorithm for the aversion k-clustering problem via the local k-median problem. We use a primal-dual approach; our technical contribution is a non-local rounding step which we feel is of broader interest.

Original languageEnglish (US)
Title of host publication43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016
EditorsYuval Rabani, Ioannis Chatzigiannakis, Davide Sangiorgi, Michael Mitzenmacher
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959770132
DOIs
StatePublished - Aug 1 2016
Event43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016 - Rome, Italy
Duration: Jul 12 2016Jul 15 2016

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume55
ISSN (Print)1868-8969

Conference

Conference43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016
Country/TerritoryItaly
CityRome
Period7/12/167/15/16

Keywords

  • Approximation algorithms
  • Clustering
  • K-median
  • Primal-dual

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Approximation algorithms for aversion k-clustering via local k-median'. Together they form a unique fingerprint.

Cite this