Abstract
Triphenylphosphine (TPP) surface-functionalized and F-108 Pluronic-stabilized gold nanoparticles (F-108@TPP-AuNPs) have been synthesized through a one-step approach, leading to well-defined (9.6±1.6 nm) and water-soluble nanoparticles by microwave heating an aqueous solution of TPP-AuICl in the presence of a Pluronic polymer under basic conditions. TPP release was negligible under physiological conditions, but enhanced significantly at an acidic pH (5.4) mimicking that of a cancer cell. Laser irradiation (532 nm) raised the temperature of an aqueous solution of F-108@TPP-AuNPs to 51.7 °C within 5 min, confirming efficient light-to-heat conversion capabilities without significant photodegradation. TEM confirmed intracellular localization of F-108@TPP-AuNPs in the cytosol, endosomes and lysosomes of HeLa cells. F-108@TPP-AuNPs were well tolerated by HeLa cells and zebrafish embryos at ambient temperatures and became toxic upon heat activation, suggesting synergistic interactions between heat and cytotoxic action by TPP.
Original language | English (US) |
---|---|
Pages (from-to) | 5270-5279 |
Number of pages | 10 |
Journal | Chemistry - A European Journal |
Volume | 26 |
Issue number | 23 |
DOIs | |
State | Published - Apr 21 2020 |
Keywords
- apoptosis
- chemotherapy
- drug delivery system
- hyperthermia
- zebrafish
ASJC Scopus subject areas
- Catalysis
- Organic Chemistry