Arabidopsis gls mutants and distinct Fd-GOGAT genes: Implications for photorespiration and primary nitrogen assimilation

Karen T. Coschigano, Rosana Melo-Oliveira, Jackie Lim, Gloria M. Coruzzi

Research output: Contribution to journalArticlepeer-review

Abstract

Ferredoxin-dependent glutamate synthase (Fd-GOGAT) plays a major role in photorespiration in Arabidopsis, as has been determined by the characterization of mutants deficient in Fd-GOGAT enzyme activity (gls). Despite genetic evidence for a single Fd-GOGAT locus and gene, we discovered that Arabidopsis contains two expressed genes for FdGOGAT (GLU1 and GLU2). Physical and genetic mapping of the gls1 locus and GLU genes indicates that GLU1 is linked to the gls1 locus, whereas GLU2 maps to a different chromosome. Contrasting patterns of GLU1 and GLU2 expression explain why a mutation in only one of the two genes for Fd-GOGAT leads to a photorespiratory phenotype in the gls1 mutants. GLU1 mRNA was expressed at the highest levels in leaves, and its mRNA levels were specifically induced by light or sucrose. In contrast, GLU2 mRNA was expressed at lower constitutive levels in leaves and preferentially accumulated in roots. Although these results suggest a major role for GLU1 in photorespiration, the sucrose induction of GLU1 mRNA in leaves also suggests a role in primary nitrogen assimilation. This possibility is supported by the finding that chlorophyll levels of a gls mutant are significantly lower than those of the wild type when grown under conditions that suppress photorespiration. Both the mutant analysis and gene regulation studies suggest that GLU1 plays a major role in photorespiration and also plays a role in primary nitrogen assimilation in leaves, whereas the GLU2 gene may play a major role in primary nitrogen assimilation in roots.

Original languageEnglish (US)
Pages (from-to)741-752
Number of pages12
JournalPlant Cell
Volume10
Issue number5
DOIs
StatePublished - 1998

ASJC Scopus subject areas

  • Plant Science
  • Cell Biology

Fingerprint

Dive into the research topics of 'Arabidopsis gls mutants and distinct Fd-GOGAT genes: Implications for photorespiration and primary nitrogen assimilation'. Together they form a unique fingerprint.

Cite this