TY - GEN
T1 - Are there graphs whose shortest path structure requires large edge weights?
AU - Bernstein, Aaron
AU - Bodwin, Greg
AU - Wein, Nicole
N1 - Publisher Copyright:
© 2024 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. All rights reserved.
PY - 2024/1
Y1 - 2024/1
N2 - The aspect ratio of a (positively) weighted graph G is the ratio of its maximum edge weight to its minimum edge weight. Aspect ratio commonly arises as a complexity measure in graph algorithms, especially related to the computation of shortest paths. Popular paradigms are to interpolate between the settings of weighted and unweighted input graphs by incurring a dependence on aspect ratio, or by simply restricting attention to input graphs of low aspect ratio. This paper studies the effects of these paradigms, investigating whether graphs of low aspect ratio have more structured shortest paths than graphs in general. In particular, we raise the question of whether one can generally take a graph of large aspect ratio and reweight its edges, to obtain a graph with bounded aspect ratio while preserving the structure of its shortest paths. Our findings are: Every weighted DAG on n nodes has a shortest-paths preserving graph of aspect ratio O(n). A simple lower bound shows that this is tight. The previous result does not extend to general directed or undirected graphs; in fact, the answer turns out to be exponential in these settings. In particular, we construct directed and undirected n-node graphs for which any shortest-paths preserving graph has aspect ratio 2ω(n). We also consider the approximate version of this problem, where the goal is for shortest paths in H to correspond to approximate shortest paths in G. We show that our exponential lower bounds extend even to this setting. We also show that in a closely related model, where approximate shortest paths in H must also correspond to approximate shortest paths in G, even DAGs require exponential aspect ratio.
AB - The aspect ratio of a (positively) weighted graph G is the ratio of its maximum edge weight to its minimum edge weight. Aspect ratio commonly arises as a complexity measure in graph algorithms, especially related to the computation of shortest paths. Popular paradigms are to interpolate between the settings of weighted and unweighted input graphs by incurring a dependence on aspect ratio, or by simply restricting attention to input graphs of low aspect ratio. This paper studies the effects of these paradigms, investigating whether graphs of low aspect ratio have more structured shortest paths than graphs in general. In particular, we raise the question of whether one can generally take a graph of large aspect ratio and reweight its edges, to obtain a graph with bounded aspect ratio while preserving the structure of its shortest paths. Our findings are: Every weighted DAG on n nodes has a shortest-paths preserving graph of aspect ratio O(n). A simple lower bound shows that this is tight. The previous result does not extend to general directed or undirected graphs; in fact, the answer turns out to be exponential in these settings. In particular, we construct directed and undirected n-node graphs for which any shortest-paths preserving graph has aspect ratio 2ω(n). We also consider the approximate version of this problem, where the goal is for shortest paths in H to correspond to approximate shortest paths in G. We show that our exponential lower bounds extend even to this setting. We also show that in a closely related model, where approximate shortest paths in H must also correspond to approximate shortest paths in G, even DAGs require exponential aspect ratio.
KW - Graph theory
KW - Shortest paths
KW - Weighted graphs
UR - http://www.scopus.com/inward/record.url?scp=85184140617&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85184140617&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ITCS.2024.12
DO - 10.4230/LIPIcs.ITCS.2024.12
M3 - Conference contribution
AN - SCOPUS:85184140617
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 15th Innovations in Theoretical Computer Science Conference, ITCS 2024
A2 - Guruswami, Venkatesan
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 15th Innovations in Theoretical Computer Science Conference, ITCS 2024
Y2 - 30 January 2024 through 2 February 2024
ER -