Area-optimized low-latency approximate multipliers for FPGA-based hardware accelerators

Salim Ullah, Semeen Rehman, Bharath Srinivas Prabakaran, Florian Kriebel, Muhammad Abdullah Hanif, Muhammad Shafique, Akash Kumar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The architectural differences between ASICs and FPGAs limit the effective performance gains achievable by the application of ASICbased approximation principles for FPGA-based reconfigurable computing systems. This paper presents a novel approximate multiplier architecture customized towards the FPGA-based fabrics, an efficient design methodology, and an open-source library. Our designs provide higher area, latency and energy gains along with better output accuracy than those offered by the state-of-the-art ASIC-based approximate multipliers. Moreover, compared to the multiplier IP offered by the Xilinx Vivado, our proposed design achieves up to 30%, 53%, and 67% gains in terms of area, latency, and energy, respectively, while incurring an insignificant accuracy loss (on average, below 1% average relative error). Our library of approximate multipliers is open-source and available online at https://cfaed.tudresden. de/pd-downloads to fuel further research and development in this area, and thereby enabling a new research direction for the FPGA community.

Original languageEnglish (US)
Title of host publicationProceedings of the 55th Annual Design Automation Conference, DAC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781450357005
DOIs
StatePublished - Jun 24 2018
Event55th Annual Design Automation Conference, DAC 2018 - San Francisco, United States
Duration: Jun 24 2018Jun 29 2018

Publication series

NameProceedings - Design Automation Conference
VolumePart F137710
ISSN (Print)0738-100X

Other

Other55th Annual Design Automation Conference, DAC 2018
CountryUnited States
CitySan Francisco
Period6/24/186/29/18

ASJC Scopus subject areas

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint Dive into the research topics of 'Area-optimized low-latency approximate multipliers for FPGA-based hardware accelerators'. Together they form a unique fingerprint.

Cite this