Artificial Intelligence Applications in Oral Cancer and Oral Dysplasia

Chi T. Viet, Michael Zhang, Neeraja Dharmaraj, Grace Y. Li, Alexander T. Pearson, Victoria A. Manon, Anupama Grandhi, Ke Xu, Bradley E. Aouizerat, Simon Young

Research output: Contribution to journalArticlepeer-review

Abstract

Oral squamous cell carcinoma (OSCC) is a highly unpredictable disease with devastating mortality rates that have not changed over the past decades, in the face of advancements in treatments and biomarkers, which have improved survival for other cancers. Delays in diagnosis are frequent, leading to more disfiguring treatments and poor outcomes for patients. The clinical challenge lies in identifying those patients at the highest risk of developing OSCC. Oral epithelial dysplasia (OED) is a precursor of OSCC with highly variable behavior across patients. There is no reliable clinical, pathological, histological, or molecular biomarker to determine individual risk in OED patients. Similarly, there are no robust biomarkers to predict treatment outcomes or mortality in OSCC patients. This review aims to highlight advancements in artificial intelligence (AI)-based methods to develop predictive biomarkers of OED transformation to OSCC or predictive biomarkers of OSCC mortality and treatment response. Biomarkers such as S100A7 demonstrate promising appraisal for the risk of malignant transformation of OED. Machine learning-enhanced multiplex immunohistochemistry workflows examine immune cell patterns and organization within the tumor immune microenvironment to generate outcome predictions in immunotherapy. Deep learning (DL) is an AI-based method using an extended neural network or related architecture with multiple “hidden” layers of simulated neurons to combine simple visual features into complex patterns. DL-based digital pathology is currently being developed to assess OED and OSCC outcomes. The integration of machine learning in epigenomics aims to examine the epigenetic modification of diseases and improve our ability to detect, classify, and predict outcomes associated with epigenetic marks. Collectively, these tools showcase promising advancements in discovery and technology, which may provide a potential solution to addressing the current limitations in predicting OED transformation and OSCC behavior, both of which are clinical challenges that must be addressed in order to improve OSCC survival.

Original languageEnglish (US)
Pages (from-to)640-651
Number of pages12
JournalTissue Engineering - Part A
Volume30
Issue number19-20
DOIs
StatePublished - Oct 1 2024

Keywords

  • digital pathomics
  • epigenomics
  • multiplex immunohistochemistry
  • oral epithelial dysplasia
  • oral squamous cell carcinoma

ASJC Scopus subject areas

  • Bioengineering
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Artificial Intelligence Applications in Oral Cancer and Oral Dysplasia'. Together they form a unique fingerprint.

Cite this