TY - JOUR
T1 - Assignment of absolute configurations of the enantiomeric spiroiminodihydantoin nucleobases by experimental and computational optical rotatory dispersion methods
AU - Durandin, Alexander
AU - Jia, Lei
AU - Crean, Conor
AU - Kolbanovskiy, Alexander
AU - Ding, Shuang
AU - Shafirovich, Vladimir
AU - Broyde, Suse
AU - Geacintov, Nicholas E.
PY - 2006/7
Y1 - 2006/7
N2 - The diastereomeric spiroiminodihydantoin (Sp) lesions are oxidation products of guanine and 8-oxo-7,8-dihydroguanine (8-oxoG) and have generated considerable interest because of their stereochemistry-dependent mutagenic properties in vivo (Henderson, P. T., et al. (2003) Biochemistry 42, 9257-9262). However, the absolute configurations of the two diastereomers have not yet been elucidated, and such information may prove valuable for understanding relationships between biological function and structure at the DNA level (Jia, L., Shafirovich, V., Shapiro, R., Geacintov, N. E., and Broyde, S. (2005) Biochemistry 44, 13342-13353). We have synthesized the two chiral Sp nucleobases by hydrolysis of the nucleosides denoted by dSp1 and dSp2 according to their elution order in HPLC experiments using a Hypercarb column, and determined their absolute configurations using a combination of experimentally measured optical rotatory dispersion (ORD) spectra in aqueous solutions and computed ORD specific rotations using density functional theory (DFT). Recent developments have shown that DFT methods are now sufficiently robust for predicting ORD values of chiral molecules (Polavarapu, P. L. (2002) Chirality 14, 768-781). The nucleobases Sp1 and Sp2 exhibit experimentally measured CD and ORD spectra that are very close to those of the respective precursor nucleosides dSp1 and dSp2 in shape and sign. The first nucleoside stereoisomer (dSp1) to elute from a typical Hypercarb HPLC column has (-)-S, while the second (dSp2) has (+)-R absolute configuration. The R and S assignments are applicable to the amino tautomeric forms in each case.
AB - The diastereomeric spiroiminodihydantoin (Sp) lesions are oxidation products of guanine and 8-oxo-7,8-dihydroguanine (8-oxoG) and have generated considerable interest because of their stereochemistry-dependent mutagenic properties in vivo (Henderson, P. T., et al. (2003) Biochemistry 42, 9257-9262). However, the absolute configurations of the two diastereomers have not yet been elucidated, and such information may prove valuable for understanding relationships between biological function and structure at the DNA level (Jia, L., Shafirovich, V., Shapiro, R., Geacintov, N. E., and Broyde, S. (2005) Biochemistry 44, 13342-13353). We have synthesized the two chiral Sp nucleobases by hydrolysis of the nucleosides denoted by dSp1 and dSp2 according to their elution order in HPLC experiments using a Hypercarb column, and determined their absolute configurations using a combination of experimentally measured optical rotatory dispersion (ORD) spectra in aqueous solutions and computed ORD specific rotations using density functional theory (DFT). Recent developments have shown that DFT methods are now sufficiently robust for predicting ORD values of chiral molecules (Polavarapu, P. L. (2002) Chirality 14, 768-781). The nucleobases Sp1 and Sp2 exhibit experimentally measured CD and ORD spectra that are very close to those of the respective precursor nucleosides dSp1 and dSp2 in shape and sign. The first nucleoside stereoisomer (dSp1) to elute from a typical Hypercarb HPLC column has (-)-S, while the second (dSp2) has (+)-R absolute configuration. The R and S assignments are applicable to the amino tautomeric forms in each case.
UR - http://www.scopus.com/inward/record.url?scp=33746358821&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33746358821&partnerID=8YFLogxK
U2 - 10.1021/tx060078e
DO - 10.1021/tx060078e
M3 - Article
C2 - 16841958
AN - SCOPUS:33746358821
SN - 0893-228X
VL - 19
SP - 908
EP - 913
JO - Chemical research in toxicology
JF - Chemical research in toxicology
IS - 7
ER -