Atmospheric dynamics from synoptic to local scale during an intense frontal dust storm over the sistan basin in Winter 2019

Dimitris G. Kaskaoutis, Diana Francis, Alireza Rashki, Jean Pierre Chaboureau, Umesh C. Dumka

Research output: Contribution to journalArticlepeer-review


The Sistan Basin has been recognized as one of the most active dust sources and windiest desert environments in the world. Although the dust activity in Sistan maximizes during the summer, rare but intense dust storms may also occur in the winter. This study aims to elucidate the atmospheric dynamics related to dust emission and transport, dust-plume characteristics, and impacts on aerosol properties and air quality during an intense dust storm over Sistan in February 2019. The dust storm was initiated by strong northerly winds (~20 ms−1) associated with the intrusion of a cold front from high latitudes. The upper-level potential vorticity (PV)-trough evolved into a cut-off low in the mid and upper troposphere and initiated unstable weather over Afghanistan and northern Pakistan. At the surface, density currents emanating from deep convective clouds and further strengthened by downslope winds from the mountains, caused massive soil erosion. The passage of the cold front reduced the temperature by ~10C and increased the atmospheric pressure by ~10 hPa, while the visibility was limited to less than 200 m. The rough topography played a major role in modulating the atmospheric dynamics, wind field, dust emissions, and transport pathways. Meso-NH model simulates large amounts of columnar mass dust loading (> 20 g m−2) over Sistan, while the intense dust plume was mainly traveling below 2 km and increased the particulate matter (PM10) concentrations up to 1800 µg m−3 at Zabol. The dust storm was initially moving in an arc-shaped pathway over the Sistan Basin and then it spread away. Plumes of dust covered a large area in southwest Asia, reaching the northern Arabian Sea, and the Thar desert one to two days later, while they strongly affected the aerosol properties at Karachi, Pakistan, by increasing the aerosol optical depth (AOD > 1.2) and the coarse-mode fraction at ~0.7.

Original languageEnglish (US)
Article number453
JournalGeosciences (Switzerland)
Issue number10
StatePublished - Oct 2019


  • Cut-off low
  • Dust aerosols
  • Frontal dust storm
  • Sistan
  • Upper-level trough

ASJC Scopus subject areas

  • General Earth and Planetary Sciences


Dive into the research topics of 'Atmospheric dynamics from synoptic to local scale during an intense frontal dust storm over the sistan basin in Winter 2019'. Together they form a unique fingerprint.

Cite this