TY - GEN
T1 - AUC optimization vs. Error rate minimization
AU - Cortes, Corinna
AU - Mohri, Mehryar
PY - 2004
Y1 - 2004
N2 - The area under an ROC curve (AUC) is a criterion used in many applications to measure the quality of a classification algorithm. However, the objective function optimized in most of these algorithms is the error rate and not the AUC value. We give a detailed statistical analysis of the relationship between the AUC and the error rate, including the first exact expression of the expected value and the variance of the AUC for a fixed error rate. Our results show that the average AUC is monotonically increasing as a function of the classification accuracy, but that the standard deviation for uneven distributions and higher error rates is noticeable. Thus, algorithms designed to minimize the error rate may not lead to the best possible AUC values. We show that, under certain conditions, the global function optimized by the RankBoost algorithm is exactly the AUC.We report the results of our experimentswith RankBoost in several datasets demonstrating the benefits of an algorithm specifically designed to globally optimize the AUC over other existing algorithms optimizing an approximation of the AUC or only locally optimizing the AUC.
AB - The area under an ROC curve (AUC) is a criterion used in many applications to measure the quality of a classification algorithm. However, the objective function optimized in most of these algorithms is the error rate and not the AUC value. We give a detailed statistical analysis of the relationship between the AUC and the error rate, including the first exact expression of the expected value and the variance of the AUC for a fixed error rate. Our results show that the average AUC is monotonically increasing as a function of the classification accuracy, but that the standard deviation for uneven distributions and higher error rates is noticeable. Thus, algorithms designed to minimize the error rate may not lead to the best possible AUC values. We show that, under certain conditions, the global function optimized by the RankBoost algorithm is exactly the AUC.We report the results of our experimentswith RankBoost in several datasets demonstrating the benefits of an algorithm specifically designed to globally optimize the AUC over other existing algorithms optimizing an approximation of the AUC or only locally optimizing the AUC.
UR - http://www.scopus.com/inward/record.url?scp=84897965802&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897965802&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84897965802
SN - 0262201526
SN - 9780262201520
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 16 - Proceedings of the 2003 Conference, NIPS 2003
PB - Neural information processing systems foundation
T2 - 17th Annual Conference on Neural Information Processing Systems, NIPS 2003
Y2 - 8 December 2003 through 13 December 2003
ER -